Theory of Mind Models for Human Robot Interaction
under Partial Observability

Franziska Herbert*!, Fabian Kalter*! and Tobias Niehues*!

Abstract— Humans cooperate with each other on an every-
day basis using some form of Theory of Mind (ToM). This
term describes a human’s ability to infer the mental state of
another person, e.g. the person’s beliefs or goals, which in turn
enables more efficient interaction and cooperation. Robots do
not inherently have a similar concept, thus implementing a
ToM for robotic agents could potentially enable much more
natural Human Robot Interaction. In this paper, we explore
existing ToM approaches to infer the mental states of a human
interaction partner. In addition, two different approaches are
implemented to estimate the goal of another agent given the
past environment states. The estimated goal is then used as
input for a Reinforcement Learning module that learns our
agent’s optimal behavior. The proposed methods are evaluated
in the Overcooked environment. We are able to show that we
can successfully infer the goal of the other agent and use this
goal to learn a policy. Yet at the same time, our results show that
ToM models are not always as useful or necessary as they seem.
The environmental conditions and evaluation metrics can not
be chosen as straightforward as one might think and require
more thought and research.

I. INTRODUCTION

In recent years we have seen great progress in Al re-
search. Starting from Als like Deep Blue [1], multiple Al
systems like Deepmind’s AlphaGo (2], [3] or OpenAl Five
[4] were able to beat human champions in competitive games
like Chess, Go, or even video games. Yet, we see these
remarkable performances only in competitive settings. This
leaves us with the question, why we cannot reproduce such
outstanding performances in multi-agent settings where the
agents must cooperate on collaborative tasks.

On the contrary, humans work together on solving certain
tasks on an everyday basis. While doing this, they benefit
from remarkable social skills, allowing them to make in-
ferences about the current thoughts, beliefs, and desires of
other people around them, represented in the so-called mental
state. Thus, to achieve high-quality Human Robot Interaction
(HRI) [5], we need to employ mechanisms in robots that
somehow reproduce the social capabilities of humans.
Cognitive Scientists and Psychologists refer to these social
capabilities as the so-called Theory of Mind (ToM), which
is the conscious knowledge that other people also have their
own mental states and consciousness [6]. Humans acquire
this ability at the age of two to five years, allowing for more
complex cooperation with other children [7].

Since robots do not have a native Theory of Mind, it is
clearly beneficial to provide them with appropriate heuristics

*Equal Contribution !Department of Intelligent Autonomous Sys-
tem, Technical University of Darmstadt, Germany, Correspondence to
{franziska.herbert, fabian kalter, tobias.niehues} @stud.tu-darmstadt.de

Actions 3597 ToM Model
Overcooked >
Environment
Environment State @
SRS
— ~ Belief ¢3
L |8 Sub-Goal
. R \ 4
Recipe ; Reinforcement
| Su_ é Learning
. 4 Actions (=
ZINTel

Rewa_rd _ @

Fig. 1: An overview of our approach. Two agents interact
with each other in an Overcooked environment where they
must cooperatively prepare a salad. We use a ToM model
to estimate one agent’s current sub-goal by observing its
past actions and past environment states. The resulting belief
about the sub-goal, along with the environment state and
recipe, is then used as input to a Reinforcement Learning
module that learns the other agent’s action.

or models to compensate for these missing social skills,
thus enabling proper cooperation with other agents in even
complex tasks.

Recent research introduced concepts on how to incorporate
a Theory of Mind in agents, e.g. by using general Artificial
Neural Networks, Inverse Reinforcement Learning, or models
based on Bayesian Analysis (cf. Section II). The output
of these ToM models can then be used in Reinforcement
Learning, an approach for shaping agents’ behaviors by
letting them take arbitrary actions and then providing them
with a reward, representing whether the taken action helped
to reach the current objective or even hindered it [8].
In this work, we implement and compare various approaches
to ToM models receiving the recent actions in other agents’
trajectories as well as the current state of the world to create
an estimate of the other agents’ mental states. These mental
states provide crucial information on the other agents’ current
intentions and are therefore essential for good cooperation.
By using the predicted mental states as further input for
our Reinforcement Learning setting, we can obtain policies
that are not only optimal in terms of fulfilling the desired
objective but also enable optimal cooperation with the other
agents.

The environment used in this study is a multi-agent setting
inspired by the video game Overcooked [9]. The agent’s
perception in this environment is constrained, inasmuch as
the current environment state is only partially observable.
This means that the agents cannot have complete knowledge
on all and every entity in the environment, but e.g. only their
immediate surroundings, and need to predict the unknown
parts of the environment state.

The remaining paper is structured as follows. In Section II,
we compare existing ToM models. In Section III, we intro-
duce our approaches to a ToM model and in Section IV we
evaluate those approaches in the Overcooked environment.
Section V concludes the paper and introduces future work.

II. RELATED WORK

A variety of different methods and approaches exists that

implement some kind of Theory of Mind model on an agent
for inferring the mental state of another agent. However, not
all of these approaches define the mental state in the same
way. While some approaches infer the agent’s beliefs [10],
[11], desires, [12] or goals [13], [14], others simply predict
the agent’s next action [15], [16]. In this work, we decided to
infer the goal of the other agent, as this explains the agent’s
behavior in a more general and abstract way.
We ordered existing approaches based on their concept of
implementing ToM models computationally into the five
categories Cognitive Models, Perspective-Taking, Inverse
Reinforcement Learning, Bayesian Approaches, and Deep
Network approaches. In the following, we give a short
overview of these categories.

Cognitive approaches were mainly explored in earlier
years and focused on how human ToM models from Cogni-
tive Science can be directly applied to a computational agent.
[17] presents first ideas how two cognitive architectures,
namely the Theory of Mind Mechanism model from [18]
and the Mindreading System model from [19], could be used
on a humanoid robot. However, no concrete implementation
of these concepts is given. The approach by [20] uses the
ACT-R cognitive architecture to explain human variability in
HRI, and is tested both in simulation and on a real humanoid
robot. Another widely used cognitive model is the Simulation
Theory [21] which states that humans perform ToM by
simulating another person’s mental state and using their
own decision-making system to predict the other person’s
behavior. [13] and [10] use this kind of approach to predict
the goals and beliefs of humans in HRI scenarios. Here, the
general idea lies in mapping the human’s movements to the
robot’s own movements and thereby simulating the human’s
mental state. Another approach by [22] proposes to use an
agent’s own policy to infer other agents’ hidden states in
multi-agent Reinforcement Learning scenarios. In addition,
recent work by [23] introduces a CogToM framework that
uses a cognitive model that is based on instance-based
learning theory to infer the ToM of another agent in a grid
world task. Although all the above-mentioned approaches
show promising results in their specific application scenario,
many are heavily domain-specific and cannot be applied to

arbitrary tasks easily. Additionally, while taking inspiration
from human ToM seems reasonable, human ToM is also
still an open research area and the aforementioned cognitive
models do not perfectly describe the ToM of a human.

The next class of approaches uses Perspective-Taking to
infer a ToM, which can be seen as a variant of the above-
mentioned simulation-theoretic approaches. [24] implement
perspective-taking on a robot by simulating the world from
the perspective of the human and by using spatial reasoning
to assist the human in collaborative tasks. [25] utilize a sim-
ilar approach to learn from human demonstrations. A robot
simulates the environment from the human’s perspective and
is, therefore, able to infer the human’s goal and thus learn
the demonstrated task. [26] extend this approach by enabling
a robot to predict a goal even if the human fails to achieve
it or provides insufficient data. [27] apply perspective-taking
in a competitive game scenario by exploiting the fact that
the human can only see parts of the environment, and [28]
use perspective-taking to model team members’ beliefs and
achieve collaboration in HRI scenarios. Another approach
by [29] introduces a situation assessment reasoner which
uses both the human’s state in the environment, and the task
decomposition to understand the human’s current situation.
[30] transfer this idea to a shared plan environment by
introducing a state-based system. All in all, perspective-
taking approaches are able to predict the mental state of
another agent in shared environments by taking its situation
in the environment into account. However, these approaches
rely on a fully observable environment that can be simulated
with the necessary precision.

Another class of approaches uses Inverse Reinforcement
Learning (IRL) to learn an underlying reward function. The
agent is assumed to behave according to this reward function,
striving to maximize the cumulated reward. [31] shows that
certain relationships exist between ToM and IRL, e.g., by
interpreting an agent’s reward as its desire and the policy as
its intentions. [16] apply this approach by learning the reward
function of a human to model the human’s next action in an
autonomous driving scenario. [32] use IRL to predict the
human’s plan, also in an autonomous driving task, and [33]
learn a cost function to infer the human’s goal in a shared
autonomy environment. However, many of those approaches
assume that the agent is a rational planner and, therefore,
acts optimally given its reward function. But it has been
known for a long time that humans do not act rationally
optimal [34] and might act depending on preferences or other
beliefs. Therefore, if those approaches are used to predict the
mental state of a human interaction partner, this optimality
assumption will most likely not hold.

The class of Bayesian ToM models deals with the problem
of inferring the other agent’s mental state in a probabilistic
way. These approaches maintain a probability distribution
over the different mental states by using Bayes’ Rule and
by conditioning on the agent’s history of states and actions.
They utilize Inverse Planning to estimate the current value
of a state with regard to reaching a specific mental state. For
example, [11] introduce a Bayesian model for ToM that in-

fers an agent’s beliefs over different states of an environment
given the history of states the agent visited in the last time
steps. At each time step, the agent updates its beliefs about
the environment. Similar approaches infer a human’s sub-
goal [35], an agent’s belief [36], a human’s beliefs, desires
and precepts [12], relationships between agents [37] or be-
liefs about other agents’ states [38]. One recent representative
of the Bayesian approaches is called Bayesian Delegation
[14]. This approach maintains a probability distribution over
sub-goal allocations to the different agents and uses Bayesian
Inference to calculate the probability that a specific sub-goal
allocation occurs. The approach is tested in an Overcooked
environment similar to the environment used in this work.
A major advantage of Bayesian ToM models is that they
naturally provide a probability distribution over the different
mental states, which is required in many cases.

In recent years, several approaches have used deep net-
works to estimate the mental state of an agent [15], [39],
[40]. The approach by [15] introduces the so-called ToMnet
which can be used to predict the next action but also the goal
of an agent in a grid world scenario. The underlying structure
of the ToM model is a deep network that is divided into three
different parts, the character net, the mental state net, and
the prediction net. The character net is used to determine
the character of the observed agent by taking its state-action
history from past episodes as input, the mental state net infers
the current mental state of the agent by looking at the state-
action history of the current episode and the prediction net is
used to predict the future behavior of the agent. While this
approach performs very well on the respective grid world
scenario and is able to predict the mental state of many
different classes of agents, it also requires a large amount
of training data for being able to perform at this level. In
this paper, we implement an approach that is inspired by the
above introduced ToMnet.

III. OUR APPROACH

In the previous section, we compared several classes of
how to computationally implement a Theory of Mind model
for a robot or an agent. The main idea of this paper is
to compare several of those different approaches and see
how they perform in comparison with each other. In this
section, we present our two approaches to inferring another
agent’s ToM. Namely, we are going to introduce a simple
Bayesian model that forms a belief about an agent’s goal and
a deep neural network approach. Both approaches return a
probability distribution over the agent’s goals. Furthermore,
we are going to introduce an RL model that learns how our
agent should behave according to the inferred mental state of
the other agent. An overview of our approach can be found
in Figure 1.

A. Theory of Mind Models

We define the mental state to be equal to the sub-goal
gsub currently pursued by the agent. We are predicting a
probability distribution over all ng,; possible sub-goals. A
higher probability for a sub-goal g, corresponds to a higher

belief in g, actually being the current sub-goal of the agent.
By predicting the current sub-goal probabilistically and not
the next action of the agent, we describe the mental state in
a more general and abstract way.

The input for our model consists of a history of the state
space and a history of actions of the last few time steps.
The state space is represented by a set of feature maps (FM),
each consisting of simple bits structured in 2D grids with
the same dimensions (H, W) as our environment. Each map
represents one certain class of objects in the environment.
Every entry in an FM represents one tile of the grid world
in our environment and is either equal to O or 1. A 1 denotes
that the object of the class represented by the FM is present
at this tile, while a O states the absence of that object.

The complete state space is represented by a tensor of size
(N,L,D,H, W), containing the feature maps for the last
L time steps. N denotes the batch size, L is the sequence
length and D is the number of object classes represented by
a single FM. H and W directly correspond to the height H
and width W of our environment.

The action history consists of a sequence with a fixed length
L. If the sequence already contains L action-observation
pairs, the oldest one is discarded in the next time step.

The output of our model is a probability distribution over all
Nsup POssible sub-goals.

1) Belief Tracker: In a first approach to inferring the sub-
goal of the other agent, we take advantage of the fact that
in most cases the sub-goal is determined by the objects with
which the agent interacts. By tracking the agent’s movement,
we can infer the direction in which the agent is moving, and
thus which objects the agent is likely to interact with. Such
a goal-directed movement prediction has been successfully
applied in other domains, such as in probabilistically pre-
dicting the movement goal of a human arm trajectory [41]
or in modeling the movement of pedestrians [42]. However,
in our case, we deal with a discrete environment, where the
agent moves in a grid world.

We maintain a belief b, ;(0) to which object the agent is
moving, by observing the last position s; = (z4,y;) of the
agent, i.e. the direction in which the agent moves in the grid
world. At each time step, we update that belief according to
Bayes’” Rule

P(8¢t|ok, bot)bo t (0)

Poton) = PO 00) = S o o (o)

where b, ;(0) is the current belief about the agent’s object
goal in form of a categorical probability distribution and
p(St|ok, bot) is the likelihood that the specific action is
performed given the real underlying object goal o and the
belief from the last time step. We calculate this likelihood
by assuming noisy goal directed movements

p(st‘okabo,t) = N(St|‘§k710k)7
S =81+ Dok St-1)
\So,k - 3t—1|

where o is noise on the path towards an object goal,
I is the identity matrix, s, is the position of object oy
and |.| is the Euclidean norm. In the first time step, the
belief is initialized uniformly over all objects. When the
agent interacts with an object, the belief is reset because we
assume that the agent subsequently moves to another object
and therefore changes its goal.

Since the execution of one sub-goal of the agent might
include the interaction with more than one object, we need
to maintain a second belief about the actual sub-goal of the
agent which depends on the movement belief. The sub-goal
belief by +(g) is updated in the same way as described above

B ~ P(bot|gr; by t)bg ¢ (gr)

P l90) = P0kIBo Bak) = 5, gy by)

Hereby, p(bo.t|gk,bg:) is again the likelihood that the
motion belief occurs given the current sub-goal and the sub-
goal belief from the last time step. It is computed using prior
information about the decomposition of the sub-goals, i.e.,
which object the agent must interact with to satisfy the sub-
goal, given the history of objects with which the agent has
previously interacted. To compute the likelihood, we again
use a Gaussian Distribution

p(bo7t|gk7bg,t) :N(bo,t|6710k})7 (1)

where 6 denotes a one-hot vector over all objects with a
1 at the index of the next expected object. When one sub-
goal is completed, the sub-goal belief is reset and in order to
get a probability for the sub-goal DO NOTHING, the deviation
from the agent’s position from its last position is considered.
If the agent could interact with multiple objects to complete
the sub-goal, both probabilities are calculated according to
Equation 1 and the two probabilities are added.

2) Deep Network: The deep neural network architecture
used for evaluation in this paper is inspired by the architec-
ture used in [15]. In general, the model can be divided into
three sections. The first layers are convolutional layers to
handle the state space, which is defined by 2D feature maps.
These convolutional layers were chosen to exploit the spatial
relations within the feature maps. Afterwards, an LSTM cell
with two layers extracts temporal information from a history
of observations and actions we also provide as input. Lastly,
multiple fully-connected layers are used to infer the actual
sub-goal.

As shown in Figure 2, this model uses three distinct inputs.
The first consists of most of the environment states (e.g.
object positions, agent orientations...), the second contains
counter positions as well as cutting board positions and the
third input are the actions taken by the other agent. The
inputs have the following shapes

Input; = (N, L,Dy,H, W)
Input, = (N, L, Dy, H, W)
Input, = (N, L, K),

Input 1 Input 2 Input 3

l !

Convolutions

|

I

Convolute & Flatten

I

Concatenate

)

LSTM

I

FC

o

Output

Convolutions

Fig. 2: The general network architecture of our deep ToM
model. The network processes the state-action history of an-
other agent and outputs a categorical probability distribution
over all possible sub-goals.

where D; and D, are the number of feature planes in
Input; and Input,, respectively, and K is the number of
actions an agent can take decoded as a one-hot vector. For
an explanation of the other variables refer to Section III-A.

The idea behind this architecture is that the network learns
a causal link between certain points of interest (POI) (e.g. a
tomato), the neighborhood of said POI’s, and the change of
the POIs position over time, with the sub-goal an agent has
in mind.

B. Belief MDP

We model the agents’ interaction with the environment
as a multi-agent Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) [43]. The Dec-POMDP can
be described as a tuple < D,S, A, T, R,0,€) >, where D
is the set of n agents, S is the set of states and A is the
set of joint actions that consists of the actions a; of the
individual agents. The transition function 7' : S x A — S
describes the transition from one state into the next state
when taking a specific joint action and each state transition
results in a reward that is described by the reward function
R : SxA — R. All agents share the same reward function. {2
describes the set of joined observations and O : S x A —)
is the observation function.

We assume that each agent can completely observe the
positional state of the environment, i.e. the position of each
object and agent in the environment. Therefore, the only part
that is not observable is the mental state of the other agents.
This makes the complete state of the environment partially
observable. To solve the Dec-POMDP, we use the concept
of a Belief MDP [44]. We maintain beliefs about the mental
states of the other agents as probability distributions and
include those into the state space of the POMDP. Thereby,
the discrete POMDP becomes a continuous MDP which can
be solved with standard Reinforcement Learning algorithms.
The observations are the past state-action pairs from the other
agents. Those are passed to the ToM model which returns
the belief about the agents’ mental states.

C. Overcooked Environment

To test the different ToM approaches, we make use of
a multi-agent cooperative environment that is inspired by
the video game Overcooked [9]. In the video game, each
player controls a chef and the players need to cooperate with
each other to prepare and serve different dishes in a limited
time period. The game presents a coordination challenge, as
not all ingredients are accessible to all agents and narrow
corridors prevent agents from moving freely. In multi-agent
RL research, different versions of the Overcooked game have
recently been used as multi-agent environments [45], [46],
[47], [48], [49], [14].

In this paper, we use a simplified environment that is

inspired by and similar to the environment used by [14].
The environment can be seen as a simple grid world where
counters are walls that the agent cannot pass and that are
used to store and prepare food. An exemplary environment
is shown in Figure 3a.
The task of the agents is to prepare salads following pre-
defined recipes. Each recipe requires a certain sequence of
high-level actions. For example, to prepare a tomato-lettuce
salad, both the tomato and the lettuce must be chopped, be
placed on a plate and then be delivered to the delivery square.
Figure 3c shows an illustration of this recipe. To complete
the recipe, agents can perform six different low-level actions,
including moving to each side, interacting with an object,
and a no-operation action. To influence the difficulty of the
scenario, the map can be designed arbitrarily difficult with
counters separating the two agents or different numbers of
interaction objects.

D. Motion Planning

To prepare a dish in the Overcooked environment, a
sequence of several high-level actions needs to be executed
by the agents. High-level actions could, for example, be
CUT_TOMATO or DELIVER_PLATE.

To execute one high-level action, an agent has to perform
several low-level actions (RIGHT, LEFT, UP, DOWN, DO
NOTHING or INTERACT). For example, the execution of the
high-level action CUT_TOMATO requires the agent to move to
the tomato, interact with it to pick it up, move to the cutting
board and interact with the cutting board twice, once to put

the tomato down and the other time to chop the tomato.
However, one high-level action always maps to a similar
sequence of low-level actions that only varies depending on
the location of the corresponding objects. For this reason,
we decided to learn actions on a high level and provide the
agent with a simple mapping between high-level and low-
level actions. This not only simplifies the learning process
but also provides us with a general action controller that
we can use to control other agents using simple high-level
behavior rules.

Each high-level action can be broken down into two parts:
moving to objects and interacting with objects. The latter just
requires executing the low-level action INTERACT. Moving
to an object, on the other hand, requires a path to that object.
Therefore, we calculate the shortest path using the Floyd-
Warshall Algorithm [50], [51] to the nearest free field next
to the counter on which the object is placed. The shortest
path is recalculated at each time step and the agent always
takes the first low-level action on that path.

In case the object is not reachable and the agent holds an
object in his hand, the agent places that object on a free
counter that is available to the other agent.

IV. EVALUATION

In this section, we evaluate the ToM models introduced
in the previous section on two different levels of the Over-
cooked environment. The room design of the first level, the
reduced level, can be seen in Figure 3a. Both agents are
separated by a wall and can therefore only reach certain
objects. This room design is supposed to encourage the
agents to cooperate with each other in order to fulfill the
task. In this level, the lettuce, the plate, and the delivery
square are always only reachable by agent O (blue agent),
while the tomato is only accessible to agent 1 (pink agent).
Both agents have access to a cutting board. Within these
requirements, the objects are placed at random positions, and
also the starting position of both agents is selected randomly.
In total, this level has 6400 different start states.

The second level, the advanced level, has the same room
design as the first level, but the objects are no longer
restricted to be only on one side of the room. The objects are
randomly placed in different positions in the whole room.
Therefore, both agents can in theory have access to all
ingredients depending on their random placement. This level
has 14400 start states in total.

In both levels, the agents share a reward function. For each
completed sub-goal, i.e. step of the recipe, the agents get
a reward of +10 and for finishing the complete recipe an
additional reward of +1. This leads to a total possible reward
of +41.

In order to train and evaluate our ToM models, we have
recorded 1000 games between two agents respectively for
each of the two levels. The two agents’ behavior was
preprogrammed, i.e. we predefined which high-level action
the agents should perform in which situation and used our
high-to-low-level action mapping to control the agents.

Theory of Mind |

i

&
/ o

oIy
g-g-%

Right

Down

(a) Overcooked environment with wall.

(b) Theory of Mind.

(c) Recipe for a tomato-lettuce salad.

Fig. 3: The Overcooked environment that we use to evaluate the ToM models in this paper. In the environment (a) the two
agents are separated by a wall. (b) shows an example of how the blue agent uses Theory of Mind to estimate the sub-goal
of the pink agent by observing its actions and (c) shows the different steps to prepare a tomato-lettuce salad.

Figure 3b shows an example of how the estimation of the
sub-goal of another agent with a ToM looks like.

A. Training the ToM Models

In this section, we describe how the Belief Tracker and the
Deep ToM model perform in the Overcooked level designs
previously introduced in Section IV. See Table I for the
accuracies of the different ToM models on the training data
set.

1) Belief Tracker: Since the belief tracker does not have
any parameters that can be tuned, it does not require any
training. We evaluated the performance of the belief tracker
on the recorded game data sets for the two different levels,
each time predicting the goal of both agents. Table I shows
the achieved accuracies on the different levels for the two
agents. As can be seen from the table, the performance of
the Belief Tracker is quite constant across the different levels
and agents. However, the accuracy does not exceed 80%.
This is due to the fact that the two agents often have to wait
for another. As soon as the Belief Tracker is very sure about
one goal, i.e. the uncertainty of the distribution is very low,
it is difficult to react to changes in the agents’ behavior.
Especially, when the agent waits for the other agent and
therefore has the goal DO NOTHING, changes to another goal
are almost never recognized.

2) Deep Network: To train the deep network the set of
1000 episodes (i.e. games) is used, each containing multiple
deliveries of the final plate and the true sub-goal of each
agent at every time step. Since we want this model to be
used only by one of the agents, each model gets fed the
input data of the other agent. Due to the fact that most
of the hyperparameters of the model are determined by
the environment that is used, only decisions regarding the
sequence length L, the number of episodes and the learning
rate need to be made.

Testing has shown that a fixed learning rate is not viable,

hence the ADAM optimizer is used to obtain an adaptive
learning rate directly via the optimization method. Choosing
the right sequence length is not as straightforward, since it
is intertwined with the maximal achievable model accuracy,
the required number of training episodes, as well as the
usability of the model itself. For example, by choosing a
sequence length of 15 time steps when, on average, a game
only takes 21 time steps to complete, the practical value
of the model is greatly diminished. Additionally, the first
training results have shown that the initial world size of 5x5
with a wall in the middle separating the agents yields bad
results in regard to accuracy. This behavior occurs because
the limited possible movement leads to very short and very
similar movements for each sub-goal, thus making it hard to
distinguish between them.

Because of that, a larger 7x7 environment was chosen. With
the new environment, a sequence length of three time steps
yields good results in regard to model accuracy (see Figure 4
and Table I), while also being short enough to provide utiliz-
ability. With these parameters, the loss function plateaus at
around 700 episodes when using the advanced environment,
while the loss deviation stops decreasing after approximately
1200 episodes. This training behavior also applies when
using the reduced environment. Multiple models were trained
on the data set using K-fold cross validation. In Figure 4
the average confusion matrix, for the advanced environment
when training with the data of agent 0 and a sequence
length of 3, is depicted exemplary. Furthermore, additional
experiments have been conducted with a modified network,
which does not take the current action of the other agent into
account. This yields only slightly worse results in regard to
accuracy (0.955) and error margin (0.022) compared to the
original network. Such a model is particularly useful when
only the environment state is accessible and communication
between agents is not possible. In Figure 5 the resulting
confusion matrix of the modified network is depicted.

Reduced Advanced
Agent 0 | Agent 1 Agent 0 Agent 1
Belief Tracker 0.739 0.788 0.722 0.722
Deep Network 1 1 0.973 £0.014 | 0.985+0.017
TABLE I: Accuracies of the predictions of the two different ToM models on the training data set.
True Subgoal True Subgoal
o 1 2 3 4 o 1 2 3 4
04 1680 120 10 20 o 04 2150 100 o 0 220
1 o] 2060 o] 20 o] 1 o] 2410 o] 0 60
@ @
= 2 o 0 2820 0 o = 2 o 0 0 150
z z
3 3
& &
3 o] 60 o] 2920 20 3 o] 30 o] 2180 o]
44 0 100 o] 10 . 44 0 60 o] 0 .

Fig. 4: Confusion matrix of the deep neural network ToM
model for the behavior of agent 0, when trained in the
advanced environment.

B. Training a Policy for the Agent

After training the ToM models, we want to take the
estimated belief over the mental state of the other agent
into account for finding a policy for our agent. As already
introduced in Section III-B, the interaction of an agent with
the environment can be modeled as a Belief MDP. To solve
this MDP, we use Reinforcement Learning. In more detail,
we utilize Double Deep Q-Learning (DQN) [52]. As an input
for the deep Q-network we concatenate the several feature
maps of the environment state, the belief distribution over
the goal of the other agent from the ToM model and a
vector which indicates which steps of the recipe have yet
to be fulfilled and flatten the resulting vector into a one-
dimensional vector. The corresponding DQN consists of two
hidden fully-connected layers with 640 and 128 neurons,
respectively, and a leaky ReL.U activation function each. The
output layer is also fully-connected and maps to the twelve
different high-level actions. We train the network using an
experience replay buffer, where tuples consisting of the past
state, action, reward, and following state are stored, for faster
training. At each training step, the parameters of the main
Q-network are partially copied to a second network with the
same architecture, the target network, which helps with the
stability of the learning process. We train using a batch size
of 64, a discount factor of 0.9 and the ADAM optimizer with
a learning rate of 0.001.

In the following, we describe the results of training the
DQN on the two different Overcooked levels introduced
above. As a baseline, we always trained the DQN using no

Fig. 5: Confusion matrix of the deep neural network ToM
model without action input for the behavior of agent 0, when
trained in the advanced environment.

input from the ToM models, i.e. the corresponding input to
the DQN is set to zero. This is supposed to evaluate how the
learning algorithm performs without knowing or estimating
the goal of the other agent. In addition, we trained using an
optimal ToM model, which means that we input the true goal
of the other agent to the DQN.

The results of training for agent 0 on the reduced level
are shown in Figure 6a. The training was performed with
the different versions of the ToM model for 10000 episodes
each. The plot shows the mean and the standard deviation of
the total achieved reward over 10 runs for each different ToM
model plotted over the first 7000 training episodes. As can
be seen in the plot, the learning curve from training with the
optimal ToM model (red) converges to the optimal reward
already after approximately 1000 episodes. None of our two
ToM approaches (blue and green) converges significantly
faster than the version without any ToM model (yellow).
Although we are able to learn cooperative policies using
both of our ToM model approaches, neither of our models
provides a significant advantage over not using a ToM model
in this environment level. However, we can observe that
the learning curve originating from the optimal ToM model
converges significantly faster than the version without the
ToM model. Therefore, in this environment, with this state
space, using a ToM seems to be slightly beneficial.

Similar results could be observed when training on the
advanced environment as can be seen in the plot in Figure
6b. Here, the learning curve of the Belief Tracker even rises
more slowly than the version without a ToM model. In this

40

—— Optimal ToM
No ToM

—— Belief Tracker

—— Deep ToM

104

episodes

(a) Reduced level.

0 1000 2000 3000 4000 5000 6000 7000

40

—— Optimal ToM —— Optimal ToM
No ToM 104 No ToM

—— Belief Tracker —— Belief Tracker

—— Deep ToM —— Deep ToM

0

1000

2000

3000 4000 5000 6000 7000
episodes

(b) Advanced level.

0

1000

2000

3000 4000 5000 6000 7000
episodes

(c) Advanced level with changed state space.

Fig. 6: Results from training the DQN with the different ToM models on (a) the reduced level, (b) the advanced level and
(c) the advanced level with a changed state space. The mean and the standard deviation of the total achieved reward over

10 runs is plotted over the number of episodes.

case, however, all the different trained policies required more
than 7000 episodes to fully converge to the optimal reward.

To investigate the comparatively good performance of the
version not using a ToM model, we reevaluated the definition
of the state space. The state space involves the current
position of all objects and all agents in the environment,
in addition to the recipe, which is a vector that gives
information about the pending sub-goals, and the estimated
belief about the other agent’s state space. Therefore, the state
space seems to be over-defined, and learning an optimal
policy is already possible without estimating the other agent’s
mental state. This seems to be the reason why the version
without the ToM model performs at a high level.

We explored if removing information from the state space
could potentially highlight the benefit of using a ToM model
and therefore estimating the mental state of the other agent.
Only training with the belief from the ToM model did not
lead to convergence at all. Therefore, we had to include infor-
mation about the position of the objects in the environment
in order to achieve convergence. By neglecting the position
of the agents and the current recipe, however, we achieve
a performance boost for all four policies. The results are
shown in Figure 6¢. As can be seen in the plot, all four
trained policies converge comparable or even better than the
optimal policy when training with the full state space in
Figure 6b. There is no longer a significant difference between
the convergence behavior of the four policies.

This shows, that the process of learning a policy in our two
levels of the Overcooked environment cannot significantly
profit from using our ToM models. This is most likely
due to the fact that the environment is not suitable for
evaluating our ToM approaches since it is too small and
provides too little variation in the task execution. The sub-
goal of the other agent can already be determined from the
presence and position of the objects in the environment and
does not require any ToM model. Also, the other agent is
preprogrammed to use the shortest path to objects and to
always perform the optimal sub-goal in a specific situation.

Its behavior is therefore predictable and can be assumed by
the other agent.

V. CONCLUSION

In this paper, we have explained and grouped different
Theory of Mind approaches. In addition, we have imple-
mented two different methods to infer the goal of another
agent. The first approach is a belief tracker that decides,
based on the agent’s movements and objects he interacted
with, what the most probable goal of the agent is. The second
approach is a deep neural network that processes the bygone
environment states to infer the most likely goal. The belief
over the sub-goals is then fed to a deep Q-network to estimate
the best action to take in a situation. Our results show that the
simple belief tracker, while fundamentally working, yields
significantly worse results in regard to accuracy than the
deep ToM network. Moreover, we have shown that supplying
the information of another agent’s current goals does not
significantly influence the resulting performance (in the case
of the deep ToM model), or even hinders learning (in the
case of the Belief Tracker). With this, it is safe to say,
that designing environments that can be used to evaluate the
information gain of a ToM model, is not as straightforward
as one might think.

This raises the question for future work of how to define a
level of cooperation that requires Theory of Mind models and
how to evaluate them. Additionally, we plan on evaluating
our approaches on an open Overcooked level without the
separating wall between the agents and further increasing
the capabilities of the motion planer. Another future task is
to compare our approaches against other approaches from
literature like the Bayesian Delegation [14] or some imple-
mentation of Inverse Reinforcement Learning. Also, making
the environment less observable by adding for example a
field of view for the agents opens up further challenges.
Another interesting future line of work would be to not use
preprogrammed agents for the counterpart but use agents
with variable behavior or to train all agents at the same time.

[1]
[2]

[3]

[5]
[6]
[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57-83, 2002.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484—-489,
2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.
C. Berner, G. Brockman, B. Chan, V. Cheung, P. Degbiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

K. Dautenhahn, “Socially intelligent robots: dimensions of human—
robot interaction,” Philosophical transactions of the royal society B:
Biological sciences, vol. 362, no. 1480, pp. 679-704, 2007.

H. Wimmer and J. Perner, “Beliefs about beliefs: Representation and
constraining function of wrong beliefs in young children’s understand-
ing of deception,” Cognition, vol. 13, no. 1, pp. 103—128, 1983.

H. M. Wellman, The child’s theory of mind. The MIT Press, 1992.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

Ghost Town Games Ltd., “Overcooked,” 2016. [Online]. Available:
https://store.steampowered.com/app/448510/Overcooked/

C. Breazeal, J. Gray, and M. Berlin, “An embodied cognition approach
to mindreading skills for socially intelligent robots,” The International
Journal of Robotics Research, vol. 28, no. 5, pp. 656-680, 2009.

C. Baker, R. Saxe, and J. Tenenbaum, “Bayesian theory of mind:
Modeling joint belief-desire attribution,” in Proceedings of the annual
meeting of the cognitive science society, vol. 33, no. 33, 2011.

C. L. Baker, J. Jara-Ettinger, R. Saxe, and J. B. Tenenbaum, “Rational
quantitative attribution of beliefs, desires and percepts in human
mentalizing,” Nature Human Behaviour, vol. 1, no. 4, pp. 1-10, 2017.
J. Gray, C. Breazeal, M. Berlin, A. Brooks, and J. Lieberman, “Action
parsing and goal inference using self as simulator,” in ROMAN
2005. IEEE International Workshop on Robot and Human Interactive
Communication, 2005. 1EEE, 2005, pp. 202-209.

R. E. Wang, S. A. Wu, J. A. Evans, J. B. Tenenbaum, D. C. Parkes,
and M. Kleiman-Weiner, “Too many cooks: Coordinating multi-
agent collaboration through inverse planning,” in Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, 2020, pp. 2032-2034.

N. Rabinowitz, F. Perbet, F. Song, C. Zhang, S. A. Eslami, and
M. Botvinick, “Machine theory of mind,” in International conference
on machine learning. PMLR, 2018, pp. 4218-4227.

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016, pp. 1-9.
B. Scassellati, “Theory of mind for a humanoid robot,” Autonomous
Robots, vol. 12, no. 1, pp. 13-24, 2002.

A. M. Leslie, “Tomm, toby, and agency: Core architecture and domain
specificity,” Mapping the mind: Domain specificity in cognition and
culture, vol. 29, pp. 119-48, 1994.

S. Baron-Cohen, Mindblindness: An essay on autism and theory of
mind. MIT press, 1997.

L. M. Hiatt, A. M. Harrison, and J. G. Trafton, “Accommodating
human variability in human-robot teams through theory of mind,”
in Twenty-Second International Joint Conference on Artificial Intel-
ligence, 2011.

V. Gallese and A. Goldman, “Mirror neurons and the simulation theory
of mind-reading,” Trends in cognitive sciences, vol. 2, no. 12, pp. 493—
501, 1998.

R. Raileanu, E. Denton, A. Szlam, and R. Fergus, “Modeling others
using oneself in multi-agent reinforcement learning,” in International
conference on machine learning. PMLR, 2018, pp. 4257-4266.

T. N. Nguyen and C. Gonzalez, “Theory of mind from observation in
cognitive models and humans,” Topics in Cognitive Science, 2021.

J. G. Trafton, N. L. Cassimatis, M. D. Bugajska, D. P. Brock, F. E.
Mintz, and A. C. Schultz, “Enabling effective human-robot interaction
using perspective-taking in robots,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 35, no. 4,
pp. 460-470, 2005.

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Berlin, J. Gray, A. L. Thomaz, and C. Breazeal, “Perspective tak-
ing: An organizing principle for learning in human-robot interaction,”
in AAAI vol. 2, 2006, pp. 1444-1450.

C. Breazeal, M. Berlin, A. Brooks, J. Gray, and A. L. Thomaz, “Using
perspective taking to learn from ambiguous demonstrations,” Robotics
and Autonomous Systems, vol. 54, pp. 385-393, 2006.

J. Gray and C. Breazeal, “Manipulating mental states through physical
action,” International Journal of Social Robotics, vol. 6, no. 3, pp.
315-327, 2014.

K. Talamadupula, G. Briggs, T. Chakraborti, M. Scheutz, and
S. Kambhampati, “Coordination in human-robot teams using mental
modeling and plan recognition,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2014, pp. 2957—
2962.

G. Milliez, M. Warnier, A. Clodic, and R. Alami, “A framework
for endowing an interactive robot with reasoning capabilities about
perspective-taking and belief management,” in The 23rd IEEE inter-
national symposium on robot and human interactive communication.
IEEE, 2014, pp. 1103-1109.

S. Devin and R. Alami, “An implemented theory of mind to improve
human-robot shared plans execution,” in 2016 11th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI). 1EEE, 2016,
pp. 319-326.

J. Jara-Ettinger, “Theory of mind as inverse reinforcement learning,”
Current Opinion in Behavioral Sciences, vol. 29, pp. 105-110, 2019.
R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan,
“On the utility of model learning in hri,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). 1EEE,
2019, pp. 317-325.

S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” Robotics science and systems: online
proceedings, vol. 2015, 2015.

A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuris-
tics and biases,” science, vol. 185, no. 4157, pp. 1124-1131, 1974.
R. Nakahashi, C. Baker, and J. Tenenbaum, “Modeling human under-
standing of complex intentional action with a bayesian nonparametric
subgoal model,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

M. Ramirez and H. Geffner, “Goal recognition over pomdps: Inferring
the intention of a pomdp agent,” in Twenty-second international joint
conference on artificial intelligence, 2011.

M. Shum, M. Kleiman-Weiner, M. L. Littman, and J. B. Tenenbaum,
“Theory of minds: Understanding behavior in groups through inverse
planning,” in Proceedings of the AAAI conference on artificial intelli-
gence, vol. 33, no. 01, 2019, pp. 6163-6170.

L. Yuan, Z. Fu, L. Zhou, K. Yang, and S.-C. Zhu, “Emergence of
theory of mind collaboration in multiagent systems,” arXiv preprint
arXiv:2110.00121, 2021.

I. Oguntola, D. Hughes, and K. Sycara, “Deep interpretable models
of theory of mind,” in 2021 30th IEEE International Conference on
Robot & Human Interactive Communication (RO-MAN). 1EEE, 2021,
pp. 657-664.

H. Zhu, G. Neubig, and Y. Bisk, “Few-shot language coordination by
modeling theory of mind,” in International Conference on Machine
Learning. PMLR, 2021, pp. 12901-12911.

D. Koert, J. Pajarinen, A. Schotschneider, S. Trick, C. Rothkopf, and
J. Peters, “Learning intention aware online adaptation of movement
primitives,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
3719-3726, 2019.

H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in 2015 ieee
international conference on robotics and automation (icra). 1EEE,
2015, pp. 454-460.

F. A. Oliehoek, “Decentralized pomdps,” in Reinforcement Learning.
Springer, 2012, pp. 471-503.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning
policies for partially observable environments: Scaling up,” in Machine
Learning Proceedings 1995. Elsevier, 1995, pp. 362-370.

M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and
A. Dragan, “On the utility of learning about humans for human-ai
coordination,” Advances in Neural Information Processing Systems,
vol. 32, pp. 5174-5185, 2019.

D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett,
“Collaborating with humans without human data,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

(471

[48]

[49]

[50]

[51]

[52]

P. Knott, M. Carroll, S. Devlin, K. Ciosek, K. Hofmann, A. D. Dragan,
and R. Shah, “Evaluating the robustness of collaborative agents,” arXiv
preprint arXiv:2101.05507, 2021.

K. R. McKee, J. Z. Leibo, C. Beattie, and R. Everett, “Quantifying
environment and population diversity in multi-agent reinforcement
learning,” arXiv preprint arXiv:2102.08370, 2021.

R. Charakorn, P. Manoonpong, and N. Dilokthanakul, “Investigating
partner diversification methods in cooperative multi-agent deep rein-
forcement learning,” in International Conference on Neural Informa-
tion Processing. Springer, 2020, pp. 395-402.

R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

S. Warshall, “A theorem on boolean matrices,” Journal of the ACM
(JACM), vol. 9, no. 1, pp. 11-12, 1962.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

