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Abstract

Bayesian observer and actor models have provided normative explanations for behavior in many perception-
action tasks including discrimination tasks, cue combination, and sensorimotor control by attributing behavioral
variability and biases to factors such as perceptual and motor uncertainty, prior beliefs, and behavioral costs.
However, it is unclear how to extend these models to more complex tasks such as continuous production and
reproduction tasks, because inferring behavioral parameters is often difficult due to analytical intractability.
Here, we overcome this limitation by approximating Bayesian actor models using neural networks.
Because Bayesian actor models are analytically tractable only for a very limited set of probability distributions,
e.g. Gaussians, and cost functions, e.g. quadratic, one typically uses numerical methods. This makes inference
of their parameters computationally difficult. To address this, we approximate the optimal actor using a
neural network trained on a wide range of different parameter settings. The pre-trained neural network is
then used to efficiently perform sampling-based inference of the Bayesian actor model’s parameters with
performance gains of up to three orders of magnitude compared to numerical solution methods.
We validated our proposed method on synthetic data, showing that recovery of sensorimotor parameters
is feasible. Importantly, individual behavioral differences can be attributed to differences in perceptual
uncertainty, motor variability, and internal costs.
We finally analyzed real data from a task in which participants had to throw beanbags towards targets at
different distances and from a task in which subjects needed to propel puck to different target distances.
Behaviorally, subjects differed in how strongly they undershot and overshot different targets and whether they
showed a regression to the mean over trials. We could attribute these complex behavioral patterns to changes
in priors because of learning and undershoots and overshoots to behavioral costs and motor variability.
Taken together, we present a new analysis method applicable to continuous production and reproduction tasks,
which remains computationally feasible even for complex cost functions and probability distributions.
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1. Introduction

As humans navigate through the complexities of everyday life, they heavily rely on their perception and
action skills. Even simple tasks, like grabbing an object, require precise capturing of an object’s position and a
carefully planned and executed trajectory to finally reach for it.
In experimental psychology, a lot of these tasks can be formalized as so-called production or reproduction
tasks (Wixted and Thompson-Schill, 2018). That is, tasks where subjects need to produce an action to hit a
target or reproduce an action on a continuous scale. For instance, this could be simply navigating to a certain
goal (Mittelstaedt and Mittelstaedt, 2001; Harris et al., 2000) or listening to a sound and holding down a
button for the same duration in order to reproduce it (Fraisse, 1984; Buhusi and Meck, 2005). These tasks
belong to the scope of continuous decision-making, since subjects need to actively decide for a certain action
in continuous time and space.
One famous example of a production task is the story of Wilhelm Tell. For his disobedience towards the
regional governor, he receives the punishment to shoot an apple off his son’s head with a crossbow. In the
context of a production task, this can also be divided into a perception and an action stage. When facing this
challenge, Wilhelm needs to identify the apple on his son’s head as the target he needs to calibrate his action
to. Since we are all subject to the limitations of our sensory systems, Wilhelm will only be able to obtain a
noisy visual estimate of the true position of the apple (Van Bergen et al., 2015). He then needs to plan his
action according to this noisy estimate of the apple’s position by also incorporating prior knowledge about the
world – for example, he will approximately know the height of his son and can get a good estimate of the
apple’s position from that without any visual information.
An established approach to this action planning and selection assumes that people employ cost functions
that assign costs to different actions and their respective outcomes (Cohen et al., 2010; Körding and Wolpert,
2004b). Depending on the relationship with his son, Wilhelm will most likely assign high costs to actions
that result in missing the apple and shooting his offspring instead. Lesser costs will be assigned to missing
the apple but also not hitting his son and he might even gain a reward instead of paying a cost for hitting
the apple without harming his child. The physical effort or mental stress that certain actions put on his body
and mind will most likely also play a role and add to the cost of hitting a certain object (or body). For action
selection, Wilhelm will try to minimize the sum of these costs. Even when carefully planning his action, he
will most likely not hit the exact point he was aiming at, since his muscles, joints and tendons and the neural
activations that actuate them exhibit natural, intrinsic noise (Van Beers et al., 2004; De C. Hamilton et al.,
2004) and he only had a noisy estimate of his target to aim for.
People’s actions are substantially influenced by the forms said cost functions can possibly take on. In the
context of psychological experiments, these cost functions are usually defined by the experimental design
the researcher’s choose. In the case of Wilhelm, his situation and the resulting cost function will probably
introduce a tendency to overshoot the target, since he rather wants to shoot above the apple instead of hitting
his son.
In contrast to this, a majority of experimental research results show that animals (Lejeune and Jasselette, 1986;
Lejeune and Richelle, 1982; Lowe et al., 1979) and people (Willey and Liu, 2018; Harris, 1995; Bergmann
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et al., 2011; Elliott et al., 2010, 2004; Engelbrecht et al., 2003; Sun et al., 2004b,a; Zeiler and Hoyert, 1989;
Becker and Fuchs, 1969; Weber and Daroff, 1971) are often likely to undershoot targets in the context of
perception-action-tasks.
To explore the origins of these behaviors and ultimately understand human behavior holistically, it is crucial to
have a reliable estimation and representation of the costs, prior beliefs, uncertainties and the motor variability
that actually shape human behavior. The models that represent human perception, decision-making and
action became increasingly complex over the last two centuries.
The modern approach in modeling perception is to pose it as an inference problem over the true state of the
world, given only limited sensory information – for instance, when Wilhelm combined knowledge about the
height of his son and his visual information to get an estimate of the apple’s true position. The development
of the research work within this domain led to Bayesian models being the dominant modeling approach to
human perception, known as so-called ideal observers (Knill and Richards, 1996; Ernst and Banks, 2002;
Kersten et al., 2004; Kersten and Mamassian, 2009).
Extending from the perception model, we need to also consider the decision-making process and the resulting
action together with the perception stage. This is an increasingly prominent view in the modeling of human
behavior and decision-making (cf. the idea of affordances by Gibson (1966)). Perception is pointless without
any consequences that can be taken and action without perception does not work. For instance, it has been
shown that neural evidence from perception is directly transmitted to the motor system (Hagura et al., 2017)
and that percepual uncertainty (Schlicht and Schrater, 2007; Barthelmé and Mamassian, 2009; Van Bergen
et al., 2015; Hagura et al., 2017; Knill and Pouget, 2004) and likewise action uncertainty (Trommershäuser
et al., 2003; Harris and Wolpert, 1998) are incorporated into decision-making for movements. This led to the
emergence of so-called Bayesian actor models that extend the ideal observer to more complex decision-making
and acting within the agent’s environment (Körding, 2007; Trommershäuser et al., 2008; Wolpert and Landy,
2012; Acerbi et al., 2014). They also implement the previously introduced cost functions. Moreover, they
implement a probabilistic account to perception and behavior by incorporating probability distributions
describing how the subject perceives their environment and how they generate their actions.
Yet, most models and experimental paradigms only consider discrete stimulus and action spaces, since
understanding and modeling human behavior becomes increasingly hard when moving into continuous space
because the number of stimuli a subject can be exposed to and the number of actions they can choose from
are not longer finite in continuous space.
Challenged by the complexities of such continuous models, most researchers constrained themselves to simple
cost functions (e.g. quadratic) and probability distributions (e.g. Gaussian) used in their models (Körding
and Wolpert, 2004b). Thereby, the model remains analytically tractable and can be used in all kinds of
computations. Yet, it is not clear whether quadratic costs and Gaussian distributions describe the aspects of
human perceptuomotor behavior adequately. Cost functions may be better approximated by functions that
are more robust to outliers (Körding and Wolpert, 2004b) or distributions may be grounded in psychophysical
(Weber, 1831; Dehaene, 2003; Portugal and Svaiter, 2011) or information-theoretic (Wei and Stocker, 2015,
2017) laws. To incorporate these theories into models, the actor model usually loses its analytical tractability
and thus can only be solved via numerical methods. However, numerical methods are usually computationally
expensive and hence slow, limiting the models’ use.
When modeling human behavior, the underlying parameters that generate the behavior observed in a subject
are usually unknown. They can be recovered using, for instance, sampling-based methods like Markov Chain
Monte Carlo (MCMC) methods (Hastings, 1970; Robert and Casella, 2004). These methods rely on sampling
parameter proposals and solving the model with different proposals thousands of times to guarantee statistical
convergence and thereby obtain a probability distribution of the model’s underlying parameters. With arbitrary
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cost functions and probability distributions that need to be solved numerically, these methods cannot be used
anymore, since solving simply takes too long.
We propose a novel approach for approximate Bayesian inference in actor models by approximating the
decision-making process with a pre-trained neural network, inspired by Neupärtl and Rothkopf (2021). This
network treats the perception & action problem from the perspective of the subject with no access to the true
state of the world. Here, we also set some high-level normative assumptions on how the subject’s perception
and decision-making work, for instance by introducing a cost function which the subject tries to minimize.
To infer the parameters underlying the subject’s behavior, we need another probabilistic model where we
integrate said network to perform inference. This model is designed from the researchers’ perspective who
have no access to the measurements of the subject’s sensory system but can measure the true state of the
world and the responses of the subject. This model solely serves the analysis and inference of behavior, not
imposing any normative constraints on how the subject’s behavior is implemented in the brain.
The neural network receives the parameters the model should be solved for and returns the parameters
of an action distribution that ultimately generates the subject’s actions. It is trained on a large data set
consisting of numerically solved configurations of the model. This speeds up solving the model massively
and keeps it computationally feasible while allowing for arbitrary cost functions and probability distributions.
Thereby, researchers are free of any computational constraints in their modeling choices and the model can
be integrated into any desired use case.
In our model, we employ a log-normal distribution instead of a Gaussian distribution in the perception stage
of our model, grounded in the Weber-Fechner law. The cost function in our model is defined by a set of our
parameters that allow for functional forms beyond quadratic costs and are inferred along with other behavioral
parameters. The action generation in our model is also implemented with a log-normal distribution as well to
incorporate signal-dependent noise (Harris and Wolpert, 1998).
We evaluated our method on synthetically generated data as well as on empirical data from (re-)production
tasks (Willey and Liu, 2018; Neupärtl et al., 2020) showing characteristic response patterns of human behavior
(Poulton, 1968; Petzschner et al., 2015), e.g. pervasive undershoots in these kinds of tasks. Our method
recovers perceptual uncertainty, motor variability, cost function parameters and prior beliefs reliably on all data
sets. We created a small set of analytically tractable data sets to compare the performance of our approximate
model with the results of a model using the analytical solution. The inferred posteriors of our method are
close to the ones obtained with an analytical solver. In a large-scale evaluation on randomly generated data
sets, the posterior 95% HDIs contain the true value 80-90% percent of the time.
In experimental data from a bean bag throwing (Willey and Liu, 2018) and a puck sliding task (Neupärtl and
Rothkopf, 2021), our method infers parameters reliably reproducing the observed behavior.
Still, our models exhibits some weaknesses as it shows statistical issues like eventually non-converging MCMC
chains and questionable MCMC statistics. We treat the internal representation of each stimulus as latent
sensory variables that are also inferred, thereby making the inference problem high-dimensional and thus
really hard, potentially being the cause for said issues.
We propose a novel method increasing researcher’s freedom in their modeling approaches for human behavior
in perception-and-action tasks while keeping these complex actor models solvable in reasonable time with
neural networks. Our method infers parameters on synthetic and empirical data that reliable produces the
observed behavior. Still, there are some minor issues with the statistical properties of our framework. We
plan to resolve these deficiencies in the future and thus provide a tool that aids researchers in testing various
theories in the interplay of human perception, decision-making and action.
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1.1. Overview

Section 2 introduces all necessary background information related to this work. It starts with the roots and
interplay of perception and action (Section 2.1), introduces modern Bayesian approaches (Section 2.2) as well
as experimental paradigms in (sensorimotor) decision-making (Section 2.3). The fundamentals of inference
of behavioral parameters are explained in Section 2.4 and Bayesian approaches especially in a sensorimotor
context and their applications are highlighted in Section 2.5.
Our approach is introduced in Section 3. It gives a detailed overview over the different components of our
framework, from the cost function and optimization process (Section 3.2) over architecture, training and
evaluation of the neural network (Section 3.3) to the implementation of the Markov Chain Monte Carlo
inference (Section 3.4).
Section 4 presents the results of our method, applied to synthetically created data in Section 4.1 and to
experimentally collected data in Section 4.2.
The limitations and potential of our framework is discussed in Section 5. First, its constraints are reviewed
in section 5.1. An overall discussion of the theoretical grounding and implications of our Framework in the
Bayesian context is provided in Section 5.2, before Section 5.3 closes with an overall outlook on eventual
future work.
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2. Background

Given the fact that our work spans a wide range of different interrelated fields of research, this chapter is
intended to provide a short overview of important concepts and relevant studies.
Section 2.1 starts with the history of research regarding the perception of physical stimuli, known as psy-
chophysics. We then relate this research to how humans plan their actions based on their sensory perceptual
input and how perception and action depend on each other. Since it has become a common view that percep-
tion not only depends on sensory input alone, but also incorporates prior beliefs about the environment of the
subject, Section 2.2 introduces Bayesian approaches to modeling perception and action. Bayesian models are
capable of representing prior knowledge and how it is combined with sensory evidence. This is modeling
from the subject’s perspective. Furthermore, Bayesian approaches allow for probabilistic modeling involving
distributions of various quantities, providing us with measures of uncertainty and not only scalar estimates
of different parameters. This is modeling from the researcher’s perspective. Bayesian models on the subject
level and the researcher level are independent of each other – one can use Bayesian or non-Bayesian methods
alike on both levels. We use Bayesian approaches for the model of the subject as well as for the inference of
the parameters of the model. Section 2.3 introduces the most popular experimental setups for measuring
performance and collecting behavioral data in psychophysical and perception-and-action tasks. How these
observed data can be used by inferential methods to recover the underlying parameters of a probabilistic
model, especially in modeling human behavior, is explained in Section 2.4. This chapter concludes with a
short overview of related work and different use-cases in Section 2.5.
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2.1. Perception & Action

When humans act and solve tasks in the world, the resulting action is the product of a pipeline that spans
from (1) perception over (2) decision-making in planning to (3) motor execution. Since all of these stages
are interconnected, it makes sense to always consider the actions of subjects with regard to the foregoing
perception process.
This Section starts with the early history of perception models (Section 2.1.1) and how they were extended
to general inference about the world and how they incorporate prior knowledge instead of solely relying on
information streams of the human sensory system (Section 2.1.2). The general interdependence of perception
and action is addressed in Section 2.1.3 and the role of perceptual uncertainty and motor variability for
human behavior and thus also for computational models of behavior is introduced in Section 2.1.4.

2.1.1. Psychophysics and the Weber-Fechner Law

We undergo a plethora of sensory stimuli in our everyday life. How we act in the world crucially depends
on our internal model of the outside world, which we can only access via our sensory system. For example,
to grab a cup, we first need to determine its position and shape, plan the grabbing movement and execute
it accordingly. How we perceive the physical world and represent it in our mind is captured by the field of
psychophysics. One of the first to investigate the quantitative relation between real stimulus magnitudes and
their perceived intensities was Gustav Theodor Fechner, who proposed the so-called Weber-Fechner Law. The
Weber-Fechner Law is a composite of the Weber law and the Fechner law. We will provide a short introduction
on them here, since they are fundamental and widely discussed laws in psychophysics research (Weber, 1831;
Fechner, 1860). Weber’s law was one of the first quantitative approaches to perceived stimulus magnitude in
humans. It states that the Just-Noticeable Difference (JND) between two stimuli is proportional to the stimulus
magnitude S. The JND describes the change that needs to occur in a stimulus S to be recognizable by a
subject. The ratio between the JND dS and the stimulus intensity S is proposed to be constant by Weber’s law.
This also means that bigger stimuli are much harder to distinguish than stimuli at lower intensities. The JND
dS can also be described by the relation shown in equation (2.1), where K is a constant.

dS = K · S (2.1)

Fechner then extended this law to the so-called Weber-Fechner law in equation (2.2). By introducing the
perceived intensity p, we obtain a variable describing the subjective intensity of a physical stimulus S. Fechner
also assumes that this perceived quantity p is equal to zero for some threshold S0. Again, k is a constant and
dependent on the sensory modality – i.e. vision, hearing, tactility, etc. – and the type of stimulus.

p = k · ln S

S0
(2.2)

While the Weber-Fechner law seems to account for psychophysical phenomena quite well within the middle
ranges of different stimuli (Roberts, 2006; Yi, 2009), it fails at extreme stimulus values, i.e. either very low or
very high stimulus intensities (Krueger, 1989).
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Some studies even go beyond psychophysics following a logarithmic pattern and claim that the mental number
line in the mind is overall organized logarithmically (Dehaene, 2003; Longo and Lourenco, 2007; Scheler,
2017), advocating for evolutionary optimality of a logarithmic mental scale following the Weber-Fechner
law (Portugal and Svaiter, 2011). Laski and Siegler (2007) propose that the representation of numbers and
magnitudes in the mind is naturally logarithmic but is overwritten when getting used to mathematics and
simple algebra, since it is historically established in the Western world to perform mathematical operations
on a linear number scale. For example, especially children use rulers a lot in their early development in
kindergarten and elementary school. The ruler is one of the tools that shows most prominent how we are
getting used to linear number scales in our early development already. Dehaene et al. (2008) show how
number perception is different and organized much more linearly in Western than in Indigenous cultures,
even though they received some criticism by Cantlon et al. (2009), who stated that their results are not as
clear as they claim.
As an alternative to the Weber-Fechner law, Stevens (1961) formulated Stevens’ Power Law, which assumes
that the relation between perceived stimulus intensity p and the stimulus S is not logarithmical but follows an
exponential relation. This is shown in equation (2.3), where the exponent a depends on the stimulus type
and the constant k depends on the units in which the stimulus is measured.

p = k · Sa (2.3)

Yet, Stevens’ Power law is generally criticized for being nothing more than merely a good fit of data points
averaged over multiple subjects without any underlying assumptions or explanatory power.
Some researchers argue that both laws do not contradict each other but are instead based on different
conceptualizations of how sensation can be measured and were applied to different experimental designs
(discrimination versus matching tasks) (MacKay, 1963; Shepard, 1981). Meanwhile, other researchers even
go so far as to claim that both Weber’s law and Steven’s law are incorrect and propose a new relationship,
also based on a power function but parameterized differently than Stevens’ law (Krueger, 1989).
Poulton (1968), one of Stevens’ students, criticized Stevens’ law for neglecting several other influences in
magnitude estimation tasks, since he found, for instance, the characteristics of the stimulus distribution and
other parameters of the experimental design to influence subjects’ performance.
The modern trend within psychophysics research argues that perception based on the Weber-Fechner law is
not sufficient, for example since it fails for extreme stimulus values. Recent research rather relies on Bayesian
principles that combine sensory evidence following the Weber-Fechner’ian concept with prior knowledge
about the environment in order to produce the perceived stimulus intensity (Pizlo, 2001). These frameworks
can even show that the Weber-Fechner law is Bayes-optimal in information-theoretic terms (Sun et al., 2012).
The Bayesian approach to psychophysics is also able to account for various phenomena arising in magnitude
estimation tasks across different sensory modalities (Poulton, 1968; Petzschner et al., 2015). These phenomena
can be classified into different characteristic biases which can be observed in empirical data. Please refer to
Section 2.1.5 for a detailed description of these patterns.
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2.1.2. Perception as Inference

As introduced in the previous Section, the Weber-Fechner law describes the relationship between the physical
and the perceived intensity of stimuli quite well, at least in moderate ranges of stimulus values. Yet, this is not
sufficient to capture the perceptual process holistically. Perception is more than just the mapping of a physical
quantity onto a subjective, sensory space. Rather, it is complex reasoning about what the world really looks
like.
Helmholtz (1867) already described perception as unconscious inference about the real world, an idea that
still lives on today (Rock, 1983). We need more information than just the sensory information of the world
currently surrounding us in order to perform inference, especially since this information does not represent
the ground truth. (Knill and Richards, 1996; Clark and Yuille, 2013)
Because of the limitations of the human sensory system, this sensory information is naturally noisy and
ambiguous. For example, consider the visual system: The resolution of retina images is limited by the amount
of photoreceptors on the retina. In addition to this sensory noise, there is also neural noise arising from the
dynamic electrical activity of neurons in the brain. Also, the same two-dimensional retinal image can be
produced by different three-dimensional geometries of objects and thus also challenges the human sensory
system with ambiguity. To overcome this problem, humans need to incorporate their prior knowledge about
what the world usually looks like and update their estimate of the state of the environment by combining
this prior knowledge with their current sensory image of the world. Besides, they need to have an additional
understanding for different concepts and categories in the world (Ashby and Maddox, 2005). Nevertheless, we
still need to know about the ‘usual’ structure of the world to get a sense of scene understanding. Consider the
case that we receive a mental image from our sensory system that contains no noise and accurately represents
the real world. We can see edges and colors within this picture, but we do not gain any new knowledge about
our current situation – without prior knowledge about the world, we cannot derive any semantic meaning
from this image. In reality, humans have this prior knowledge and it contains several facts and rules about the
real world, for example that natural object surfaces usually tend to have smooth, continuous changes within
their brightness. This and other rules about color, reflectivity of surfaces or other natural statistics of the
world were most likely acquired by evolution (Simoncelli, 2003). Leveraging this knowledge, edges and other
perceived properties in the mental image can be combined to higher-level features that form objects. Consider
a visual scene containing a vertically-oriented brown structure, which allows us to possibly infer by the texture
and color that it must be made of wood. If we now combine the vertically oriented edges and the smooth flat
surface on top of them, as well as our previous experience that furniture is mostly made of wood, we might
come to the correct conclusion that it is not just an image of color and edges, but actually a depiction of a
wooden chair. Without this semantic knowledge, we would only be able to see the structural information of an
image but could not attribute any meaning to it. This concept of combining previous knowledge with sensory
information is captured perfectly by Bayesian statistics (cf. Section 2.2).

2.1.3. Interdependence of Perception and Action

The information about the state of the world obtained by a subject’s sensory system propagates through a
pipeline from the perceived inputs (perception stage) over the decision-making forming the final response
(planning stage) to ultimately execute the response of an agent (action stage). Thus, it makes sense that
perception and action always need to be considered together, which is also backed up by recent studies. For
instance, Schlicht and Schrater (2007) have shown that visual uncertainty influences the planning of grasping
movements. Namely, they measured the grip aperture – i.e. the distance between the index finger and thumb
grabbing the target object – during grasping movements and observed a positive correlation between grip
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aperture and visual uncertainty. Hagura et al. (2017) found evidence that suggests that action costs even
influence our perception, since the respective motor costs for different movements in a reaching task biased
the subjects towards the less costly options. This is further backed up by neural evidence that information
about uncertainty in our sensory system is directly transmitted to the motor system, where said uncertainty
influences the planning in action control (De Lange et al., 2013).
Considering actions mutually with sensory information is also backed up from a technical perspective, since
state-of-the-art approaches in control theory also continuously integrate sensory inputs into their planning
and action execution. Optimal control is the domain of control theory that tries to find movement trajectories
minimizing some time-continuous cost function (Lewis et al., 2012). For the most part, models for human
behavior in perception-and-action tasks grounded in control theory involve a closed feedback-loop, connecting
inputs (percepts) and outputs (actions) (Todorov and Jordan, 2002; Wolpert and Ghahramani, 2000). We can
also observe the same combination of noisy information from prior beliefs and sensory information in these
technical models. For example, the Kalman Filter is a method for estimating the true state of the world based
on prior knowledge from the internal model of the world (prior beliefs) and sensory evidence (Kalman, 1960;
Wolpert and Ghahramani, 2000), which is also often used in Bayesian models of human behavior (Vilares and
Kording, 2011).

2.1.4. Perceptual Uncertainty and Motor Uncertainty

As introduced in the previous Sections, there are multiple sources of uncertainty and noise within the process of
perceiving an stimulus, planning a response to that stimulus and ultimately executing the action corresponding
to that response. In order to produce behavior in a noisy system that succeeds in solving the task at hand,
humans need to have an estimate of their perceptual uncertainty and motor variability (Knill and Pouget,
2004). This estimate must not necessarily be consciously accessible, but at least be implicitly involved in the
planning process of the movement.

There is a plethora of studies regarding whether and how well humans can access their own perceptual and
motor uncertainty, especially in (re-)production tasks. How well humans can incorporate an internal estimate
of their own uncertainty into their planning processes can easily be probed by designing experiments with
an asymmetric cost function. If the cost for one of two possible responses is much greater than for the other
response, the less-costly response should proportionally be chosen more often the more uncertain the subject
is (Whiteley and Sahani, 2008). In metacognitive approaches, the subjects are directly asked about their
uncertainty (Barthelmé and Mamassian, 2009; De Gardelle and Mamassian, 2015). Even more evidence can
be found in other studies, mostly in tasks regarding visual perception (Körding and Wolpert, 2004a; Sims and
Gray, 2008). This is further backed up by neuroscience, which shows that there are populations of neurons –
called neural population codes – in the human brain that encode the uncertainty about a quantity or even its
probability distribution as a whole (Van Bergen et al., 2015; Zemel et al., 1998; Beck et al., 2008). Even the
confidence about this uncertainty seems to be encoded in the brain, since people with orbitofrontal lesions
are not able to assess the risk associated with different responses (Hsu et al., 2005).
The hypothesis that humans have access to their own uncertainties is also evident when we investigate tasks
that require multimodal integration – i.e., tasks that need to be solved by relying on cues from different
sensory domains, for example of visual and haptic nature. The statistically optimal behavior would attribute
less weight to the more uncertain sensory inputs and rely more heavily on cues with the lowest uncertainty –
a process that has been shown to be employed by humans in multiple studies (Ernst and Banks, 2002; Ernst
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and Bülthoff, 2004; Bresciani et al., 2006; Hillis et al., 2004; Fetsch et al., 2012). The very same concept
also applies to the ratio of variability in the prior and the likelihood. Depending on the variability within
both distributions, the subject should dependent more on the prior or likelihood, whichever of both has lower
variance – at least when assuming that the subject is statistically optimal. That is, the subject needs to rely
more on the sensory information arising from their observations if they do not have a strong prior. Vice versa,
they should rely more on their prior beliefs if they can only make noisy and possibly ambiguous observations.
(Mamassian and Landy, 2001; Tassinari et al., 2006)
Furthermore, variability does not arise from perceptual uncertainty alone. As soon as the subject has a
reliable representation of the world around them, they need to act upon it. When humans want to execute a
movement, they are subject to motor noise which prevents them from executing the movement exactly as
planned. This noise is primarily induced by the physiological constraints of joints, tendons and muscles -
Van Beers et al. (2004) have shown that the noise in movement trajectories seems to stem completely from
the execution of the movement itself and not from the planning process. The strength of the noise can be
shown to be dependent on the the joint strength and to correlate with the number of motor units within the
muscles, which also correlates with muscle strength (De C. Hamilton et al., 2004). Moreover, motor noise was
found to be signal-dependent noise, which means that the amount of noise within a movement scales with the
extent of the movement (Harris and Wolpert, 1998; Jones et al., 2002; De C. Hamilton et al., 2004). Larger
movements, or movements that require more strength, are subject to bigger amounts of noise, a fact that was
important to consider within our model.

2.1.5. Response Patterns in Human Behavior

Research in the area of continuous responses, for example via the (re-)production paradigm that will be
introduced in Section 2.3.2, revealed characteristic behavioral patterns of subjects in psychophysical tasks.
The following section will provide a brief summary of these tendencies and biases.

Poulton (1968) described six different effects that the experimental design and other external conditions have
on the behavior elicited in a subject. Petzschner et al. (2015) narrowed these six effects down to the four most
prominent behavioral phenomena, which we will introduce here (cf. Figure 2.1). In the following paragraph
we assume that subjects needed to produce a response on a continuous scale and that the target stimulus is
drawn from a stimulus distribution of a certain range during the experiment.
(1) The so-called regression effect or regression-to-the-mean effect describes the tendency of subjects to produce
responses that are biased towards the mean of the stimulus distribution. This becomes apparent in overshoots
for stimuli below the stimulus mean and undershoots for stimuli above the stimulus mean. (2) The range effect
is a property of the regression effect, which states that the regression effect becomes stronger for broader
stimulus distributions. Therefore, the regression and range effect should always be considered in tandem
(Teghtsoonian and Teghtsoonian, 1978).
(3) The responses of the subjects exhibit scalar variability, i.e. the variability in the responses scales with the
mean of the response (Harris and Wolpert, 1998; Jones et al., 2002; De C. Hamilton et al., 2004). This was
already introduced in Section 2.1.4 as signal-dependent noise and is in line with the logarithmic relationship
between stimulus and sensation formulated by the Weber-Fechner law (cf. Section 2.1.1).
(4) Order effects and general effects of subsequent responses can be observed in some kind of hysteresis effect
(Eisler and Ottander, 1963; Hock et al., 2005). That is, responses after a large stimulus or response tend to
be larger than after a small(er) stimulus and vice versa.
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Figure 2.1.: Behavioral Phenomena in Magnitude Estimation and (Re-)Production Tasks - Behavioral effects
can be summarized as the regression and range effect, being subject to scalar variability and
showing a hysteresis effect for subsequent tasks. Figure taken from Figure 1B in Petzschner
et al. (2015).

Furthermore, there is a substantial amount of literature showing undershoots for a large variety of different
tasks where subjects needed to produce an action on a continuous scale. This undershoot behavior could
be observed for treadle pressing tasks (Lejeune and Richelle, 1982; Lejeune and Jasselette, 1986) and time
reproduction tasks (Zeiler and Hoyert, 1989) in pigeons and for time estimation tasks in pigeons and rats
(Lowe et al., 1979). In humans, this behavior was observed in tasks where objects needed to be placed relative
to a target stimulus (Elliott et al., 2004), in tasks involving reaching movements (Elliott et al., 2010), in
locomotion and driving a bicycle (Bergmann et al., 2011; Sun et al., 2004b,a) or when controlling objects on
a computer screen (Engelbrecht et al., 2003). Research in active vision extended this list by identifying the
same undershooting pattern in saccades (Becker and Fuchs, 1969; Harris, 1995; Weber and Daroff, 1971).
The phenomena introduced here can be explained quite well by using Bayesian models (Petzschner et al.,
2015), for example by showing that the regression and range effect found in empirical data can be reproduced
by showing a strong reliance on the prior, assuming that the prior was learnt during the experiment to
approximately represent the real stimulus distribution. Therefore, a Bayesian framework was chosen as a
baseline for our work (cf. Section 3).
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2.2. Bayesian Approaches

As introduced in Section 2.1.2, perception does not solely depend on sensory information but also on prior
knowledge and beliefs about the environment the subject is situated in. This can be posed as an inference
problem on the true state of the world, which can be formalized using Bayesian concepts. We provide a short
overview over Bayesian models in Section 2.2.1 and introduce the ideal observer and Bayesian actor model in
Sections 2.2.2 and 2.2.3, respectively.

2.2.1. Overview

Bayesian approaches are a prominent tool for modeling a variety of different cognitive processes, since they
provide a simple method for fusing bottom-up sensory information with top-down prior knowledge. Sufficient
inference about the structure of the real world is only possible with both of these information streams. Bayesian
models first were first introduced in computer vision (Geman and Geman, 1984; Bolle and Cooper, 1984)
and were soon extended to computational models of human perception (Knill and Richards, 1996; Clark
and Yuille, 2013), for example in contour detection (Geisler et al., 2001) or the perception of visual motion
(Simoncelli, 1993).
Logically, an agent embodied in the real world wants to act within this world. Thus, Bayesian models were
soon extended to not only account for perception but also motor control, thereby accounting for the whole area
of sensorimotor control. Perception and action are connected by the decision-making and planning processes
that produce an action based on sensory evidence and prior beliefs (Körding and Wolpert, 2004a; Körding,
2007; Tassinari et al., 2006).
Other approaches were applied to general cognition (Griffiths et al., 2008), e.g. for modeling predictions
based on subjects’ experiences and their memory of various natural statistics (Griffiths and Tenenbaum, 2006)
or how humans attribute causality in relations between different entities (Sloman and Lagnado, 2015). Other
probabilistic models implementing Bayesian concepts are applied in the domain of language processing and
acquisition (Chater and Manning, 2006).
There is also support for the hypothesis that the human brain itself carries out Bayesian computations. For
example, Ma et al. (2006) proposed an explanation on how the brain can neurally implement Bayesian
inference processes encoded neural population codes.
Still, Bayesian models received a lot of criticism for various reasons (Bowers and Davis, 2012) and their real
contribution to explaining human behavior is part of an ongoing debate (Jones and Love, 2011). A lot of this
criticism is directed towards studies that claim to prove that the brain implements Bayesian computations.
While it is true that there is a lack of clarity in most literature, we need to distinguish between descriptive
and normative roles of Bayesian models. While descriptive models are used for data analysis without making
any claims about the algorithmic or implementational details underlying the decision-making process in the
human mind (Kruschke, 2015; Tauber et al., 2017), normative models propose how humans should behave
to be statistically optimal and assume that humans’ mental processes actually follow Bayesian principles
(Knill and Pouget, 2004; Van Den Berg et al., 2012). Another argument against Bayesian approaches and
models is that Bayesian models offer too many degrees of freedom in the selection of the likelihood or the
prior distributions and therefore lack explanatory power. This was defended again by Griffiths et al. (2012),
for example by arguing that the choice of priors is not arbitrary but actually guided by knowledge about
how human beliefs and mental processes in the respective domain are structured (Jones and Love, 2011) or

18



by the natural, environmental statistics of the quantity in question (Simoncelli, 2003). Another solution to
resolve this conflict is to not assume statistical optimality in humans but to accept that they are sub-optimal to
a certain degree in their decision-making and planning processes (Rahnev and Denison, 2018; Rosas and
Wichmann, 2011) – several models represented empirical data more accurately when flaws were deliberately
introduced into the model (Stengård and Van Den Berg, 2019). This could be grounded in an inherently
noisy inference process in the human brain, thus introducing another source of variability besides perceptual
uncertainty and motor variability (Beck et al., 2012; Drugowitsch et al., 2016; Faisal et al., 2008; Renart and
Machens, 2014; Wyart and Koechlin, 2016).
We take an agnostic view to whether normative Bayesian models are an appropriate approach to model human
behavior. Certainly, descriptive Bayesian approaches are a great toolbox for analyzing data without making
any assumptions on the structure of the data or how it came about. We employ non-normative Bayesian
methods for the inference of parameters and only include a normative Bayesian component for our perception
model – however, we primarily model perception as inference due to the prominence of this approach and it
could be substituted by any other perception model. Our framework is intended to aid resolving this conflict
on the distinction between descriptive and normative Bayesian methods.
Some studies suggest that certain behavior cannot be explained by Bayesian principles at all (Brayanov and
Smith, 2010) and termed this phenomenon ‘anti-Bayesian’. Later on, this was reconciled by new Bayesian
models guided by information theory which explained these supposedly anti-Bayesian percepts quite well
(Wei and Stocker, 2015) by employing encoder-decoder structures for encoding stimuli with respect to
information-theoretic principles in the likelihood (Geisler et al., 2009) and grounding the prior belief of the
subjects in the natural statistics of the environment (Simoncelli, 2003).
Despite this ongoing debate about the real explanatory power of Bayesian models, a lot of them offer
explanations of how illusions (Weiss et al., 2002; Shams et al., 2005; Notredame et al., 2014) or systematic
biases in human perception come about. For example, humans have a bias to assume that light sources are
often placed above a scene (Ramachandran, 1988; Adams, 2008) or that objects are more likely of convex
shape (Langer and Bülthoff, 2001) or at least more accurately recognized if they had a convex shape (Burge
et al., 2010). Moreover, humans seem to judge orientations of shapes more accurately along cardinal axes
(horizontally and vertically), which could be explained by the prominence of cardinal orientations in the
natural statistics of the world (Girshick et al., 2011).

Knowledge and Beliefs are not necessarily consciously accessible - The ”knowledge” and beliefs
we refer to here can easily be interpreted as explicit knowledge which is consciously available during
perceptual processes. This is most likely not the case and usually not what is meant when referring to this
world knowledge. It is rather part of an automatic process during perception and exists unconsciously.
For example, the natural statistics of how edges are distributed in scenes in the real world (Girshick
et al., 2011) are a form of implicit knowledge and can probably not be accessed consciously, but were
shown to shape our interpretation of our perceptual input stream unconsciously all the time.
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2.2.2. Ideal Observer Model

In Bayesian statistics, the previously introduced concepts of incorporating prior knowledge with our subjective
sensory sensations are integrated within the so-called Ideal Observer. The observer is called ideal in the sense
that it Bayes-optimally combines the available information – that is, it produces a prediction of the real world
without being subject to any physiological constraints or psychological biases, purely on the computational
level (Knill and Richards, 1996; Kersten et al., 2004; Kersten and Mamassian, 2009). This is based on Bayes’
Theorem (Bayes, 1763), which is shown in equation (2.4). Generally, we want to infer the true state s of the
world, given some sensory, latent input quantity z.

p(s | z) =
p(z | s) · p(s)

p(z)
(2.4)

The left-hand side of the formula is known as the posterior, which is a combination of the likelihood p(z | s)
describing the probability of observing some sensory information z and the prior p(s), which represents a
person’s beliefs and knowledge about the world. The marginal probability p(z) is called the evidence and
serves as a normalizing constant to the posterior distribution p(s | z).
An ideal observer chooses a response to a stimulus, in a manner that it is statistically optimal. That is, we
have a task within the domain of psychophysics, where humans need to perceive some stimulus and then
respond with their belief about the true magnitude of this stimulus. In ideal observer models, this is captured
via a rule that chooses an action a(z) as a response to the stimulus based on their posterior belief about the
true state s, as shown in Figure 2.2. Formally, we assume a loss function L(a, s) in ideal observer models, that
assigns a value to each action-state-tuple. We refer to this value as loss or cost interchangeably, because both
terms are commonly used within the literature but mean the same: an abstract, numerical representation
of how ‘bad’ a certain action a is in a certain state s. The resulting action is then chosen by minimizing the
expected loss over all possible states in the posterior distribution, given the measurement z. The expected loss
is computed by a convolution of the posterior distribution p(s | z) with the loss function, as shown in equation
(2.5). This formalization is further supported by a variety of studies from neuroscience that show how risk,
expected utility and other properties of distributions like modality specific uncertainties can be encoded in
the brain (Schultz et al., 1997; Knutson et al., 2001; McCoy and Platt, 2005; Knutson and Peterson, 2005;
Kable and Glimcher, 2007; Körding, 2007; Hosokawa et al., 2013).

a(z) = argmin
a

E[L(a, s)] = argmin
a

∫︂

∞

−∞

L(a, s)p(s | z)ds (2.5)

The loss can also contain additional factors influencing human behavior. For example, when reporting a
response with different buttons, of which one frequently gets stuck, the cost for pressing this button will be
higher because of the discomfort it exerts on the subject. Equivalent to minimizing the loss, some models
are formulated with the indended goal of maximizing the expected gain. We are using a cost-minimization
approach here, but it could also be transformed into a gain-maximization by using the negative cost values as
gain. (Körding and Wolpert, 2004a; Trommershäuser et al., 2006; Izawa et al., 2008)
The functional form of the loss function then determines how the resulting action a is chosen from the posterior
distribution. For example, when assuming a quadratic loss, the mean of the posterior distribution minimizes
the expected loss. When assuming a loss that is low when hitting the true target and uniformly high about all
other actions, the so-called maximum a-posteriori (MAP) value, which is equal to the mode of the posterior
distribution, minimizes the expected loss. While a quadratic functional form of the loss is one of the most
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Figure 2.2.: Ideal Observer Model - The true state s of the world cannot be observed. The subject only has
access to a measurement z which is generated according to a generative model consisting of a
prior p(s) about the distribution of possible world states and the likelihood p(z | s)which specifies
how the measurement comes about. Based on the measurement z the observer chooses an
action a(z) such that the loss L(s, a) becomes minimal. Taken and modified from Figure 1A in
Kersten and Mamassian (2009).

prominent loss function types, some research suggests that this does not hold for bigger deviations from the
optimal response. Körding and Wolpert (2004b) have shown that in a pointing task the loss is quadratic
for small errors but behaves smaller than quadratic for bigger errors. They propose that, for instance, an
inverse Gaussian curve could be a better fit than a quadratic curve, motivated by its higher robustness towards
outliers.

2.2.3. Bayesian Actor Model

The exact boundaries of the Ideal Observer Model introduced in Section 2.2.2 are not well-defined. Since
the ideal observer is usually defined involving a response and an associated loss for each possible response,
it is not only an observer but already includes some kind of action in the world. Yet, to draw a clear line
between the term of the ideal observer, which we use for perceptual tasks, and models that explicitly include
more complex planning regarding an agent’s actions, we introduce the term Bayesian Actor Model. This is
especially important in regard to our own model (cf. Section 3), which consists of an ideal observer for
the perception-stage of the task but extends its action selection to a more complex optimization over the
parameterization of an action distribution that ultimately yields the subject’s responses.
The Bayesian actor also breaks with another assumption that most ideal observer models come with. Usually,
stimulus and response of the ideal observer lie in the same domain. For instance, subjects need to perceive a
target distance and then somehow reproduce this distance by, e.g., throwing a puck (cf. reproduction tasks,
Section 2.3.2). Thereby, stimulus and action are both a spatial quantity, namely a distance - but this does not
necessarily need to be the case. Consider a model that does not measure the subjects’ actions as the produced
distance but as the time holding down a button to control the effort applied to slide a puck towards the
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target. To transform the duration of the button press from the temporal to the spatial domain of the distance
travelled by the puck, we need to incorporate an appropriate transformation. This could also be extended
with a physics-based Newtonian model that integrates the relation between friction and mass of the puck,
as done by Neupärtl et al. (2020). Because of the inherent complexity of the action generation conditional
on the sensory information in the measurement z, we reckon the term ideal observer as insufficient and thus
would name a model like this a Bayesian actor model.
Futhermore, while the ideal observer (merely) considers the perceptual uncertainty of the agent’s sensory
system, a potential feature of the Bayesian actor is to also consider the variability inherent to its motor
system. Bayesian decision-making for planning an action under risk with respect to this motor variability
was already introduced and applied by Trommershäuser et al. (2008) and Wolpert and Landy (2012). Yet,
in most approaches motor variability is often only considered as additive noise to the planned action (e.g.
Acerbi et al. (2014)) and not as an intrinsic variability of a distribution that is also considered in the planning
process. Furthermore, if the uncertainty is modeled non-additively, usually only Gaussian distributions are
used, which does not leave any room for using more complex or non-linear distributions. Our framework
overcomes this limitation and allows for arbitrary action distributions while considering their motor variability
in the planning process (cf. Section 3). Either way, a model that also considers motor variability transcends
the capabilities of an ideal observer in our understanding.
Moreover, there is consistent evidence that the cost function does not only consider the accuracy in the task
but also the effort of executing the chosen action, for example the metabolic cost and thus the effort required
for executing farther-reaching movements, which have also been found to be encoded in the brain (Rudebeck
et al., 2006; Prévost et al., 2010; Walton et al., 2006, 2003; Huang et al., 2012; Cohen et al., 2010; Izawa
et al., 2008).

While we introduced Bayesian approaches here as the successor of the first psychophysical research
results, like the Weber-Fechner law, they do not stand in contrast to each other. Rather, we believe that
they can complement each other by guiding design choices within Bayesian models. The logarithmic
relation between stimulus and sensation, as proposed by Fechner (1860), can be implicitly integrated by
assuming a log-normal distribution for the likelihood (e.g. Battaglia et al. (2011)).
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2.3. Experimental Paradigms in Decision-Making

Studying human perception naturally poses the question of how reasonable experimental paradigms should
look like to allow for quantification of the human perceptual system. This Section provides a brief insight into
which experimental paradigms were introduced in the history of perception studies (Section 2.3.1) and how
common experimental setups look like today (Section 2.3.2).

2.3.1. Yes-No, 2AFC and 2IFC Tasks

Traditionally, there were three experimental paradigms most commonly used in psychophysics research: (1)
yes-no tasks, (2) two-alternative-forced-choice tasks (2AFC) and (3) two-interval-forced-choice tasks (2IFC).
All of these paradigms have in common that they require a response by the subject, regardless of their level
of uncertainty about the correct answer. In a yes-no task, subjects are presented with stimuli of different
classes and they must respond if a single stimulus belongs to a certain class (”yes”) or not (”no”). For example,
they are presented with a picture of an animal and must answer if the animal is a cat or not. In a 2AFC
task, subjects are presented with spatially separated pairs of stimuli and they must determine which of the
two stimuli fulfills a certain condition. Staying with our animal example, they could be shown two images
containing animals and they need to decide which of the two images contain a cat. The 2IFC paradigm can
be seen as a variant of 2AFC tasks, where the two stimuli are not separated spatially but temporally by an
interval of a certain duration with the stimuli being presented to the subject successively. Both the 2AFC and
the 2IFC paradigms can be extended to trials with an arbitrary number of n stimuli per trial between which
the subject must decide. In this case, the paradigms are referred to as nAFC or nIFC tasks, respectively. With
data gathered from a sufficiently large amount of trials, psychometric functions based on the probabilities for
different responses with respect to different stimuli can be estimated. (Prins and others, 2016; Wixted and
Thompson-Schill, 2018)
One limit of these paradigms is that they are constrained to discrete responses. While psychometric functions
can be used to interpolate between different stimuli, it stands to reason that conducting experiments on a
continuous response scale can offer even more insights on human behavior.

2.3.2. (Re-)Production Tasks

Extending the discrete response space from the yes-no, 2AFC and 2IFC tasks to tasks involving a continuous
response space (Yoo et al., 2021), we can also test subjects’ performance and behavior in so-called production
and reproduction tasks. Both task types have in common that they require the subject to produce an action in
order to hit a target. Hitting a target can be understood literally, as the subjects, for instance, are asked to
throw a puck at a certain target distance (Neupärtl et al., 2020), but can also consist of any other physical
quantity that should be produced in any way, for example by holding down a button for a certain duration.
While production tasks require the subjects to produce a certain magnitude of some physical quantity (e.g.
distance, time), reproduction tasks require the subjects to first perceive and then reproduce a reference
stimulus of a certain magnitude, for example by first listening to a sound of a given duration and subsequently
press a button for the same duration (Birkenbusch et al., 2015). This enables us to measure human behavior
in a more natural setup, since all types of movements the human body can naturally execute are of continuous
and smooth nature and not discrete. However, this also introduces more complexity in the analysis and
modeling of the planning and action process, for we need to consider each subjects’ action variability and cost
functions on a continuous scale as well, which is typically more complex than in discrete space.
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2.4. Inference Methods for Behavioral Parameters

This section shortly introduces the methods that can be used for retrieving parameters from behavioral data.
In addition to this, we shortly sketch the problem of identifiability in the context of Bayesian actor models in
Section 2.4.1.

The previously introduced Bayesian modeling approaches allow for complex models incorporating sensory
information and prior beliefs that can be used to accurately represent the relation between perception and
action in human behavior. Yet, we often do not know how certain behavioral parameters in the model (like
perceptual uncertainty, motor variability or the parameterization of the subject’s prior beliefs) need to be
tuned such that the model accurately fits the data and can reliably reproduce it. To this end, we need methods
that allow us to approximate the true values of these parameters, based on the quantities we can observe as
researchers, which are usually only the stimuli of the experiment and the responses they elicit in the subject.
We are already using Bayesian concepts for modeling subject behavior (cf. perceptual posterior in ideal
observers, Section 2.2.2), but can also make use of Bayes’ theorem for inferring the parameters underlying
our model. Assuming that we have a set of observed data D and we want to infer the parameters θ that define
our model, we can obtain the probabilities of different parameters conditional on our data analogously to
equation (2.4) as shown in equation (2.6).

p(θ | D) =
p(D | θ) · p(θ)

p(D)
(2.6)

Based on equation (2.6) we could only use the likelihood p(D | θ) and try to find parameters θ such that
they maximize the likelihood when we plug in our observed data D. This is known as maximum-likelihood
estimation (MLE). If we want to incorporate our prior knowledge as researchers about which parameter ranges
are realistic or at least most likely, we can employ maximum a-posterior (MAP) methods, which were previously
introduced as a way of obtaining the optimal action in an ideal observer model (cf. Section 2.2.2). Now, in
this case, one would combine the prior and likelihood distributions according to Bayes to obtain a posterior
distribution over the possible parameter space conditional on the observed data. We can now also derive
the values for the parameters θ that maximize this posterior probability. There are two limitations with this
approach: (1) MLE and MAP estimates only provide us with scalar estimates for the parameter values and
we do not have any measure of confidence about our estimate. (2) The MAP estimate can only be solved
analytically if likelihood and prior distribution are conjugate to each other – i.e. if there exists a closed-form
solution describing the posterior resulting from them.
Another approach to recover the underlying parameters of a model is Markov Chain Monte Carlo (MCMC)
sampling (Hastings, 1970; Robert and Casella, 2004). It provides us not only with a scalar estimate for the
underlying parameter values but with a full distribution over the parameter we want to recover, thereby
resolving problem (1). Furthermore, it is a numerical method that does not require analytical tractability of
the posterior, so that probem (2) is also of no further concern.
Markov Chain Monte Carlo (MCMC) sampling is – as the name suggests – a sampling-based inference method,
again based on Bayesian concepts (Hastings, 1970; Robert and Casella, 2004). A welcome feature of MCMC
sampling is its ability to not only infer scalar estimates for the true parameters, but to approximate whole
posterior distributions over the model parameters. This allows us to quantify the uncertainty of our parameters
and to identify ambiguities. For instance, if the observed data can be explained by two different sets of
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parameters equally well, MLE or MAP methods would only provide one of the two possible solutions, while
MCMC can provide us with a multimodal distribution showing both possible parameter configurations.
The basic idea behind MCMC sampling is computationally expensive because it relies on drawing thousands
of samples to approximate the posterior distribution, but yields impressive results given its simple concept.
In MCMC sampling, we draw proposals for possible values of the true parameter values and compute their
posterior probability based on the observed data and our prior beliefs. Based on the posterior probability, the
proposed samples are either discarded or accepted as a ‘true’ posterior sample. By that, a Markov Chain can
be constructed to be stationary and represent a distribution as estimate for the true posterior distribution.
The exact computational principles of MCMC sampling are beyond the scope of this work and will not be
explained further here.

2.4.1. Identifiability Problems

If we want to retrieve the parameters of a (Bayesian) model we can encounter identifiability problems for
the parameters in question. Depending on the general structure of the model, the complex and non-trivial
interactions between different cost function parameters and the overall shape of likelihood and prior form an
ill-defined problem since multiple parameter configurations can produce the same behavioral data (Acerbi
et al., 2014; Sohn and Jazayeri, 2021).
Sohn and Jazayeri (2021) introduce of so-called prior-cost metamers, as illustrated in Figure 2.3. Given the
original prior probability density po(s) and an original, quadratic cost function co(s, a), we can construct a
metamer consisting of a metamer prior pm(s) and a metamer cost cm(s, a) by shifting prior and cost function
inversely proportionally, which results in the same behavior, since the expected cost determines the resulting
action and is formed by the convolution of prior and cost.
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Figure 2.3.: Prior-Cost Metamers – In the common formulation of Bayesian actor models with quadratic
cost and Gaussian prior, one can encounter identifiability problems in pairs of prior and cost.
An original behavior (top row) can be reproduced with a metamer (bottom row) with different
parameters by inversely proportionally shifting cost and prior. This makes the inference problem
harder because it does not have a unique, well-defined solution. Inspired by Figure 1B from Sohn
and Jazayeri (2021).

Acerbi et al. (2014) resolve this problem with several proposals for the experimental design and the formulation
of the computational model, in order to avoid degeneracies in the identification of behavioral parameters. Sohn
and Jazayeri (2021) created an experiment with transitions in the prior or cost function between different
blocks of trials that do not require a change of the agent’s actions to still perform well in the new block. In
some experiments, they found a change in subject behavior at these transitions, in some they did not - this
suggests that different experiments trigger different processing pathways in the human mind, either explicitly
or implicitly learning prior distributions and cost functions, respectively. Which one of these mechanism will
be used, might be dependent on various external, experimental conditions.
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2.5. Bayesian Approaches in Psychophysics and Control

There is a multitude of work in modeling perception and action and inference of behavioral parameters that
employs methods or concepts similar to the ones used in this work. Section 2.5.1 will give a short overview to
related work and Section 2.5.2 introduces some potential applications in, for instance, psychiatric diagnostics
and meta-cognition research.

2.5.1. Similar Approaches

This work is mainly inspired and heavily influenced by Neupärtl and Rothkopf (2021). They pursued the
same goal and employed the same methods that we use now, but with a few limitations. They also consider
motor variability in an optimization problem to find the optimal action in a Bayesian actor model and perform
approximate inference via neural networks over the underlying behavioral parameters. A limitation that
arises in this approach lies in the perception stage of the model, which does not allow for prior beliefs to
be considered in the subject’s inference of the true target. We integrate a prior distribution in our model
and introduce latent sensory variables that represent the measurements of each stimulus which the subjects
combine to obtain a noisy percept of the real stimulus. For more details on this, consider Section 3.1.
Further work by Neupärtl et al. (2020) considers perceptual uncertainty and motor variability in a Bayesian
model. They apply their model to a puck sliding task which we also use for the evaluation of our method on
empirical data (Section 4.2.2). However, their approach is different to ours, since they focused on testing
whether and how well subjects use internal physical models in the calculation of their action in (re-)production
tasks.
Houlsby et al. (2013) introduced their so-called Cognitive Tomography as a method of inferring the priors of
subjects in a face perception task. They formulate their problem as an inverse ideal observer. They do not
infer any behavioral parameters other than the priors, but provide an in-depth analysis of whether priors are
task-dependent or invariant to the task-specific context. Furthermore, they consider actions as simple, discrete
choices instead of on a continuous scale.
The use of log-normal distributions as likelihood for sensory evidence inspired by the Weber-Fechner law (cf.
Section 2.1.1) was also part of the work of Battaglia et al. (2011). Furthermore, they estimated perceptual
uncertainty and motor variability in a distance estimation task involving cue combination of haptic and visual
sensory information.
Petzschner and Glasauer (2011), again, use a log-normal relation between stimulus and subjective sensation
and model data specifically showing the typical regression and range effects (cf. Section 2.1.5) in a human
path integration task. While they only use a perceptual task – distance estimation during locomotion –,
not modeling the action and planning process, they use a Kalman-Filter to iteratively update the posterior.
This makes the posterior adaptive to each single trial and thus allows for modeling the learning of the prior
distribution, which our model does not yet consider. However, they do not perform parameter inference about
their models.
Tractability of Bayesian models is a common problem, which can be overcome by using numerical methods.
The branch concerned with this is called Approximate Bayesian Computation (ABC) and the majority of these
works addresses non-tractable likelihoods. Recently, because of the general advance of neural networks, a
subdomain of ABC evolved, involving neural approaches (Sisson et al., 2018).
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Figure 2.4.: Müller-Lyer illusion - Most people experience the upper line to be shorter than the bottom line,
despite their actually equal length. The fins at the ends of the two parallel lines modulate the
prior of the subject to favor either longer or smaller lines. This probably arises from experience
on the spatial organization of the world. Taken from Barrett (2017).

Mostly, these methods focus on estimating unavailable likelihoods, usually by simulating data from the model
to learn synthetic likelihoods (Papamakarios et al., 2019; Lueckmann et al., 2019; Fengler et al., 2021).
Moreover, there are methods for estimating posterior densities (Blum and François, 2010; Papamakarios and
Murray, 2016). While we also use a neural network in our model, our approach is much less sophisticated since
we solve an optimization problem to estimate parameters of the subject’s action distribution that produces
their responses to different stimuli, instead of approximating the whole distribution. In our model, we still
assume a certain functional form of the resulting distribution.

2.5.2. Applications

One of the main features of our framework is the disentanglement of different sources of variability and
prior beliefs. While solving (re-)production tasks, subjects go trough a complex process involving perception,
movement planning and execution of the planned response. Each of these stages adds variability to the
resulting action, which is the only observable quantity for us as researchers. At first glance, it seems impossible
to retrace this accumulated noise to its different sources. Yet, our approach resolves this problem by confidently
estimating each stage’s share on the total resulting noise. Thereby, we can attribute failures in performance to
whether there was a problem with the execution of the movement, the perception of the environment or if the
person has a mismatch between their prior beliefs and the natural statistics of the world. This is especially
useful in medical applications, for example in the early detection of mental or sensorimotor disorders. While
it is straight-forward that deviations in the perceived stimuli or the executed actions are reliable indicators of
perceptual or motor disorders and probably do not need a thorough analysis through frameworks like ours,
the prior beliefs within a Bayesian framework can also be good indicators for mental diagnostics or explain
the dynamics of mental disorders (Chambon et al., 2011; Notredame et al., 2014). Since visual illusions are
good examples of where our perceptual system fails, illusory paradigms are a good methodological approach
to test and compare healthy subjects to subjects with a mental disorder in terms of their performance and
behavior (Pessoa et al., 2008). Usually, visual illusions arise because of a mismatch in the weighting of sensory
evidence and prior beliefs, for example the Müller-Lyer illusion shown in Figure 2.4 is, according to Gregory
(1997), induced by the context of the fins of the parallel lines. Experience in how the world is spatially
structured makes the lines appear as if they were of different lengths - this is, in the Bayesian context, an
overweighting of the prior belief that is modulated by the spatial context of the lines. This makes the Bayesian
framework a well-suited tool for studying visual illusions, especially in the context of mental disorders. While
still debated, there is increasing evidence for lesser susceptibility to visual illusions in patients suffering from
schizophrenia (Pessoa et al., 2008; Brown et al., 2013; Notredame et al., 2014). This is especially the case in
illusions that arise because of heavy prior expectations. In patients with schizophrenia, this can for instance
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be explained by too heavy or too weak influence of the prior in the inference of the stimulus, depending
on the exact task (Chambon et al., 2011; Notredame et al., 2014). As another example, in autistic subjects
an exaggerated relicance on sensory evidence was found (Pellicano and Burr, 2012). This paradigm can be
extended from the sole perception aspect towards tasks involving perception and action, since there may be
not only perceptual but also sensorimotor impairments (Shergill et al., 2005; Chen et al., 2011; Brown et al.,
2013), which perfectly maps to the use-case of our framework.
The domain of meta-cognition is concerned with how accessible cognitive processes are, essentially it addresses
‘cognition about cognition’. Since our work puts different sources of uncertainty in planning processes and
how they can be disentangled in its focus, it is worth taking a look at metacognition in perceptual tasks.
De Gardelle and Mamassian (2015) investigated whether the reported uncertainty of subjects matched the
inherent variability of a task’s stimuli. They further examined whether confidence judgments were similar
across different sensory modalities (De Gardelle and Mamassian, 2014). Our work could contribute to
extending their findings from perceptual tasks to tasks involving sensorimotor control. Furthermore, our
model could be modified to account for meta-cognitive uncertainty about the subjects’ confidence in judging
their own uncertainty. Additionally, it might help to explain to which extent the meta-cognitive uncertainty is
composed of perceptual uncertainty or motor variability and how much noise is added only in the retrieval
and judgment of a subject’s own uncertainty.
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3. Methods

Bayesian actor models (cf. Section 2.2) are a popular approach for modeling human behavior in tasks
involving perception and action (cf. Section 2.1). Most approaches were designed for tasks that only allow
for simple, discrete responses (cf. Section 2.3.1) and reach their limits when we want to extend them to
more complex, continuous production and reproduction tasks (cf. Section 2.3.2). Especially because inferring
behavioral parameters is analytically intractable in most cases (cf. Section 2.4). We overcome this limitation
by approximating the decision-making within Bayesian actor models with neural networks.

In reproduction tasks, from the researchers’ perspective, only the target stimulus t and the subject’s response
action a are observable. All other variables, like the subject’s sensory representation of the stimulus – which
we call measurement or sensory information z – or behavioral parameters that determine the subject’s behavior,
are latent, internal variables and thus can only be approximated by inference. Inferring these parameters
is crucial to identify and quantify differences between subjects and understanding human behavior. Our
model consists of different components, which are shown in Figure 3.1 and will be introduced here briefly
to give a general understanding of how all of these components are interconnected. First, we model the
perception of the subject, which can be posed as an inference problem over the true state of the world. The
subjects only have access to the measurement z, which represent their sensory information about the stimulus.
Formalized in Bayesian statistics, this measurement is combined with their prior beliefs about the world to
form a posterior distribution that represents their belief about the real world and thereby forming a so-called
percept. Our perceptual modeling is also psychophysically grounded in the Weber-Fechner law. How this
process is implemented exactly is addressed in Section 3.1.
To quantify human behavior and attribute its origins to different aspects in a subject’s performance, we assume
that human behavior can be described by a loss function L(a, t) involving both a loss for missing the target
t as well as a loss for the effort of producing the respective action a. We will also refer to loss functions as
cost functions; the terms will be used interchangeably in this work. The weighting of this trade-off between
task accuracy and required effort is a highly subjective measure and modeled by the free parameters of the
employed cost function. Since there is plenty of evidence that humans can (at least unconsciously) access
their own perceptual uncertainty and motor variability, these also need to be considered in modeling the
decision-making for the final action a. To incorporate sensory variability into a model, as it is done, e.g., in
ideal observer models (cf. Section 2.2.2), usually the expected loss over the posterior from the perception state
is computed and minimized. Our model is more sophisticated in that it also considers motor variability and
not only sensory variability, therefore we consider our model to be a Bayesian actor model (cf. Section 2.2.3).
The final action is generated from a distribution parameterized by a set of parameters θa.
Usually, the distributions used in these models are Gaussian and the cost functions are assumed to be quadratic.
This is often due to computational convenience since it keeps the model analytically tractable. We employ
log-normal distributions since these are in line with Weber-Fechner’ian principles of perception and we use
a more complex cost function to factor in more aspects of behavior. This does away with said analytical
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Figure 3.1.: BayesianActorModel of our Framework– (A)The subject only has access to a sensory estimate z
of the true target stimulus t. In order to solve the task successfully, they need to perform inference
to obtain a posterior over the true value of the target t. (B) The cost function is convoluted with
the respective sensory and action distributions to form the expected cost over both distributions.
The optimal action distribution parameter µ∗

a is given by the value of µa for which the expected
cost E[L(a, t)] becomes minimal. (C) To speed up computation and make MCMC feasible, the
convolution and optimization process from (B) is approximated by a neural network that takes the
sensory information z and other behavioral parameters θcost, θprior and σ as input to approximate
the optimal action distribution parameter µ∗

a. In our case, the action distribution only has one free
parameter, but this could be easily extended to probability distributions with higher dimensional
parameterizations. (D)While the subject needs to infer the true target t based on itsmeasurement
z, the researcher can only access the true target t in each experimental trial and needs to infer
the subject’s perceptual uncertainty σp and their sensory information z from that.
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tractability. Computing the optimal parameters θ∗

a
of the action distribution, such that the expected loss is

minimized, is based on a double convolution which can only be solved numerically in most cases. The exact
design of the cost function and how the numerical solution to the optimization problem is found is introduced
in Section 3.2.
Numerical solutions like these are usually too computationally expensive to perform inference over the models
that implement them. We overcome this limitation by approximating the numerical solution with neural
networks, trained on a wide range of possible parameters for our actor model. Thereby, we achieve a speedup
of about three orders of magnitude and thus make it feasible to employ sampling-based inference methods in
order to retrieve the true values of the underlying parameters describing a subject’s behavior. The architecture,
training process and evaluation of the neural network are presented in Section 3.3.
Since our ultimate goal is to not only appropriately model human behavior but also to infer the parameters
shaping this behavior from experimental data, we use Markov Chain Monte Carlo (MCMC) Sampling in our
framework. Thereby, we can infer whole posterior distributions over our parameters given the observed
actions of the subject. The exact probabilistic model we assume, as well as the technical details for our
inference method, are shown in Section 3.4. To avoid confusion in the inference process about which variables
are observed and which are not, we need to distinguish between the perspective of the subject and of the
researcher:

• Subject Perspective - From the view of the subject, the target t is unknown, since they only observe
their internal measurement z, which they need to use to perform inference about the true stimulus t.
All other parameters are assumed to be known to the subject, since there is a large amount of empirical
evidence showing that subjects are (at least implicitly) aware of their perceptual and action uncertainties
and incorporate them into their movement planning (cf. Section 2.1.4). This also applies to the cost
function, prior and action distribution parameters.

• Researcher Perspective - The researcher strives to obtain estimates of the behavioral parameters of
the subject and is thus also performing inference, but not in the same way the subject does. While
the subject performs inference only over the target stimulus t depending on their observation z of the
stimulus, the researcher uses the targets t known from the experimental setup and the observed actions
a of the subject in order to perform inference over the whole process from perception to action. They
want to infer all behavioral parameters θ = {θcost,θprior,σ} and thereby obtain quantitative measures
for the subject’s behavior. The latent sensory variables z and action distribution’s parameters θa are also
latent and need to be inferred from the researcher, but the behavioral parameters θ shaping the overall
behavior are of primary interest to them.
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Model Structure
The whole model consists of four main components, the first three of which are shown in Figure 3.1:

1. Bayes-Optimal perception of the target, representing subject-side inference over the true value
of the target t given a noisy measurement z which is latent and cannot be accessed from the
researchers’ perspective. We assume behavior of an ideal observer and thus that people have
a-priori knowledge about how the targets are distributed and combine it with their sensory
information received during the task to obtain an estimate over the true value of the target (Section
3.1).

2. Numerical minimization of the expected value of the cost function E[L(a, t)] over the values of
the action distribution’s parameters θa which determine the actions taken by the subject (Section
3.2).

3. Training a Neural Network leveraging the results of the minimization in order to speed up
the optimization process. This step has no purpose besides speeding up computation, since
the numerical minimization is computationally expensive (Section 3.3). By approximating the
minimization with a neural network, it becomes feasible to useMarkov ChainMonte Carlo Sampling,
which would not be possible otherwise.

4. Markov Chain Monte Carlo Sampling for inference of parameters, making use of said neural
network. With this method we can reliably extract the values of the parameters of the cost
function θcost as well as behavioral parameters like the uncertainties of the perceptual and action
distribution σ = {σp, σa} and the parameters of the prior distribution θprior. The totality of all
inferred parameters is given by θ = {θcost,θprior,σ} (Section 3.4).

By assembling all of these concepts in our framework, we are providing a toolbox for any researcher concerned
with continuous decision-making to obtain estimates of the parameters shaping the subject’s behavior and
thus making inter-subject comparisons possible on a quantitative level. Furthermore, careful shaping of the
cost function and the perception stage as Bayesian inference allows for the interpretation of cost function
parameters and prior parameters. For example, how strongly a subject weights effort cost versus missing the
target or how heavily they rely on a prior versus sensory evidence to plan their action and what this prior looks
like. By substituting different components based on different assumptions about the underlying perceptual /
action distributions and parameterizations of the cost function, our framework encourages researchers to find
a model best describing a subject’s behavior and potentially gain insights and ideas about the inner workings
of the subject’s mind on an implementational or algorithmic level. Thereby, our tool enables researchers to
identify behavioral differences between subjects.
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Figure 3.2.: Bayesian Models from Different Perspectives – The subject only has (explicit) access to their
internal measurement z and the action a they execute. The subjects need to infer the ground
truth of the stimulus t given the sensory information z. They then need to generate an action
a from that. The researcher needs to infer the latent measurement of the subject given the
stimulus t they used in each trial. For that, we employ a neural network to mimic the inference
of the true stimulus and the optimization process happening in the subject’s mind to choose
the action distribution’s parameter µ∗

a which yields the action a in the end. While the subject is
oblivious of their internal parameters θ and σ, these are the exact parameters the researcher
tries to infer to describe and analyze their behavior.
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3.1. Observer Model

Our model is based on an ideal observer model as introduced in Section 2.2.2. Thus, we are modeling the
perception stage also in a Bayesian framework by computing the posterior distribution over the true target t
based on the measurement z of the target t the subject received from their sensory system. In the introduction
of Bayesian approaches in Section 2.2 we used the variable s for the overall state of the environment which
the ideal observer tries to infer and the Bayesian actor acts upon. In the following, we will use the variable
t for the target, which is basically equivalent to the state s, but we only consider (re-)production tasks for
our framework, thus we are always only inferring the value of a specific target t and not an extensive state s.
It is important to note here that we cannot use the true value of the target t in our model directly, since we
assume that humans do not have direct access to the ground truth of the world structure surrounding them
but only to a noisy measurement z. They need to use this information from their sensory system to infer the
true state of the world and we try to mimic this process with our ideal observer (see Figure 3.2).
To do so, we assume a log-normal likelihood logN (z | log t, σp) for the measurement z, using the target t as
median of the resulting log-normal distribution and the subject’s individual perceptual uncertainty σp. The
main reason why we chose a log-normal likelihood is that it is an elegant way to integrate the Weber-Fechner
law into a Bayesian model. Since Weber-Fechner proposes a logarithmic relation between stimulus and
sensation (cf. Section 2.1.1), we can implicitly model this relation in a log-normal distribution for the sensory
likelihood. Furthermore, log-normal distributions are already naturally constrained to positive values, which
only make sense in perception-and-action tasks, for negative measurements of the stimuli or negative actions
are usually not possible in common formalizations of these problems. Last but not least, a core property
of the log-normal distribution is that it mimics signal-dependent noise since its variability scales with the
distribution’s mean. Thereby, we can implicitly incorporate insights from human motor control research that
shows that human movements are usually subject to signal-dependent noise (cf. Section 2.1.4).
For computational convenience, we also chose the subject’s prior as a log-normal distribution with two free
parameters logN (µprior, σprior). A log-normal distribution is the conjugate prior to a log-normal likelihood,
which results in an analytically tractable posterior distribution that also takes on the form of a log-normal
distribution. Bayes’ rule describes this relation, as introduced in Section 2.2:

P (t | z) =
P (z | t) · P (t)

P (z)

One should keep in mind that a subject’s prior beliefs are not necessarily extensive knowledge about
the true characteristics of the world but can be as simple as their own idea about the distribution of the
experiment’s stimulus.

The parameters of the posterior distribution are then given by equation (3.1)

µpost = σ2
post

(︄

logµprior
σ2
prior

+
log z
σ2
p

)︄

σ2
post =

1
1

σ2
prior

+ 1
σ2
p

(3.1)

The resulting posterior is now a product of the likelihood and prior, where the respective uncertainties σp and
σprior define which of the two has more influence on the posterior. By definition, the posterior is always more
skewed towards the one of the two distributions with lower variability. Because of the lower variability, the
respective distribution can be interpreted as the ‘more reliable’ source of information and thus is given more
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weight. This concept is also present in Bayesian scenarios of cue integration or multimodal integration, where
the cue with the smallest variability is usually attributed the strongest weight in the formation of the posterior
and there is strong evidence that the human brain works in a similar way (cf. Section 2.4). The resulting
posterior is shown exemplarily in Figure 3.3.
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Figure 3.3.: Inference of the Posterior Distribution - Example of the resulting posterior of the ideal observer
when given a sensory measurement z. The likelihood is constructed around this measurement.
In this example, the variability of the likelihood is smaller than the variability of the prior and thus
is skewed towards the likelihood. Here, the prior draws the posterior away from the true target
value t.

At this point, we extend the classical ideal observer model to a Bayesian actor by introducing an action
distribution that also includes the motor variability σa. Since we now have two sources of uncertainty – the
sensory as well as the action uncertainty –, we need to incorporate both distributions in the calculation of the
expected loss. We model the planning of the movement as a minimization over the expected value of the loss
and thereby determine the parameters of the action distribution. This process will be the focus of the next
Section.
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3.2. Cost Function and Optimization

The first component of our model consists of finding parameters for the distribution generating the subjects’
actions, such that the expected loss E[L(a, t)] over our loss function L(a, t) becomes minimal. The choice
and parameterization of the cost function are discussed in Section 3.2.1, while the optimization process is
described in Section 3.2.2. Usually, the expected cost E[L(a, t)] is not analytically tractable, but for some
special cases we can derive an analytical solution. This is shown in Section 3.2.3.

3.2.1. Cost Function Parameterization

The choice of the cost function depends on a lot of parameters. It should contain a cost for missing the target
as well as a regularizing term penalizing increased effort. This effort represents physical as well as mental
stress exerted on the subject by taking a certain action. For example, throwing a ball at a target farther away
requires more physical strength or holding down a button for a certain period of time tests the patience of the
subjects and thus creates mental stress.
In order to portray these costs accurately in our loss function L(a, t), we need to choose from a range of
possible functional forms. Besides that, we also need to account for solvability of the integral, since the
functional form and choice of parameters also influences whether a solution exists at all. The main focus of
the loss function should be to represent the goal of the task well - that is, how well the action hits the target
in terms of accuracy. This is usually implemented using quadratic loss. Yet, how accurate the target is hit is
not the only factor guiding human behavior. For example, the mental and physical effort for performing a
chosen action should be represented by the cost function as well. The cost function we ultimately decided on
is given by equation (3.2) and visualized in Figure 3.4a. It uses a weighted combination of the effort a and a
penalty for missing the target.

L(a, t) = β|a− t|α + (1− β)a (3.2)

Since we are considering perceptual as well as motor uncertainty, we need to account for variability in the
perception of the target t and in the execution of the action a. Therefore, we have a perceptual distribution
representing the sensory uncertainty and an action distribution representing the motor variability as given in
equation (3.3). We assume by definition that each subject’s actions distribution is parameterized by the optimal
value µ∗

a, which minimizes the expected value of the subject’s cost function with respect to its parameters
θcost = {α, β}, uncertainties σ = {σp, σa} and prior beliefs θprior = {µprior, σprior}.

t ∼ logN (µpost, σpost)

a ∼ logN (µ∗

a, σa) with µ∗

a = argmin
µa

E[L(a, t)] (3.3)

The expected cost is then given by equation (3.4).

E[L(a, t)] =

∫︂

∞

0

∫︂

∞

0
L(a, t) p(a | µa, σa) p(t | µp, σp) p(t) dt da (3.4)

We can now use this equation to find the optimal value µ∗

a for µa which minimizes the expected cost. This is
further described in Sections 3.2.2 and 3.2.3.
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Alternative Parameterizations

Bear in mind that our choice of the cost function is motivated by implementations of cost and effort commonly
used in other studies (cf. Section 2.2.3), but the plenty possible parameterizations also allow for a lot of other
cost functions that might give even better results. We also see our framework as a possibility of exploring
different cost functions in order to find which one resembles empirical data best. A small overview over
possible cost function parameterizations is given in Table 3.1. For example, while quadratic loss functions are
most common in research for computational modeling of human behavior or optimal control, Körding and
Wolpert (2004b) propose an inverse Gaussian curve as a possible loss function. Since they observed that the
cost function is less sensible to big errors than prescribed by a quadratic cost, the inverse Gaussian may be a
better fit because it is more robust towards big errors. This cost function is visualized in Figure 3.4b.
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Figure 3.4.: Cost Functions – Exemplary plots for different parameterizations of the Gen2B and IG2B cost
functions. The dashed grey line represents the target t. In each pair plot β is constant on the left
and α is constant on the right (respective bold value in subfigure caption). Parameter values
increase from dotted to solid line styles.

It is important to note that each parameterization can change the range of values that are valid for each
parameter in the sense that an invalid combination of parameter values can lead to the non-existence of an
optimal solution for the problem.

3.2.2. Optimization

Since we train the neural network for our model in a supervised fashion, we need a large data set with
solutions to the optimization problem to use in the training. However, an analytical solution does not exist in
the general case. Therefore, we need to rely on numerical methods to find the optimal µ∗

a minimizing the
expected cost E[L(a, t)]. We need a numerical tool (1) for the integration over the probability distribution
and the cost function and (2) for finding the optimal µ∗

a, as explained in the following Sections. For further
details on a special case yielding an analytical solution, see Section 3.2.3.
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ID Cost Function L(a, t) Parameters θcost Components & Properties

Gen2B β|a− t|α + (1− β)a (α, β)

General form that we use here for all examples and
which gave us the best results. Trade-off between accu-
racy (1st term) and effort (2nd term) is weighted by
β ∈ [0, 1] in both two terms.

Gen2BExt β|a− t|α + (1− β)aγ (α, β, γ)
Extended version of Gen2B. Introduces an additional
parameter γ which further transforms the taken action
a into a value representing subjective effort.

Gen1B |a− t|α + βa (α, β)

Modified version of Gen2B using β not for a weighted
average of accuracy and effort, but only as weight for
one term - the effort. This changes the value range of β,
since it is not longer constrained to [0, 1] but can take
any positive real value β ∈ R

+. E.g., if the first term
is big, we also need to increase the value of β, since
the effort would have no influence on the overall cost
otherwise.

IG2B βe
−

(a−t)2

2σ2 + (1− β)a (σ, β)
Functional form of the error given by an Inverted
Gaussian instead of the general form with an expo-
nentiated absolute difference.

Table 3.1.: Overview of different cost functions with their respective IDs by which they are referenced through-
out this work. We mostly use version Gen2B for our examples cases. Each cost function has
their own set of parameters that all need to be inferred in the inference step (cf. Section 3.4).
Regarding the value ranges of the parameters and the solvability of the problem w.r.t. the chosen
parameter ranges, consult Section 3.2.4. Plots for the other versions of cost functions are shown
in Appendix A.1 and A.2.
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Numerical Integration

For solving the double integral in the computation of the expected cost given by equation (3.4), we use the
dblquad function as provided by the SciPy1-package. Thus, the integral is solved with an adaptive 21-point
Gauss-Kronrod-Quadrature in combination with the epsilon algorithm by Wynn (1956).
The integral from equation (3.4) that we are solving has indefinite upper bounds, because we are using log-
normal distributions which have infinite positive support. To ensure convergence of the integral, we implement
definite bounds. We assume that we can integrate over the [0.001, 0.999]-quantiles of the respective random
variable’s dimension without considerable loss of accuracy. Thus, we are actually numerically solving the
integrals in (3.5), where qax and qtx describe the distributions’ x-quantiles, respectively. Moreover, computation
of definite integrals is usually faster than computation of indefinite integrals, regardless of the method used.

E[L(a, t)] =

∫︂ qa0.999

qa0.001

∫︂ qt0.999

qt0.001

L(a, t) p(a | µa, σa) p(t | µpost, σpost) p(t) dt da (3.5)

Numerical Optimization

Our framework assumes that µa of the subject’s action distribution is chosen such that the expected loss
E[L(a, t)] is minimized, as given in equation (3.3). Again, since the integrals are not analytically tractable in
the general case, we employ numerical methods to minimize the expected loss.
We are using a bounded version of Brent’s Method2 (Brent, 2013) to find the optimal µ∗

a which minimizes
the expected loss E[L(a, t)]. The boundaries allow us to constrain the solution space to positive values for
µa∗, since we parameterized our log-normal distributions logN (µ, σ) such that µ ∈ (0,∞). Even though the
values of µ∗

a should not be much bigger than the biggest values for the stimuli t, we do not employ any such
constraints into the optimizer’s bounds. Therefore we choose the upper bounds generously. This leads to the
bounds [ϵ, 100], where we choose ϵ > 0 such that it is as small as our implementation allows without causing
numerical problems3.

3.2.3. Analytical Solution

Even though the problem is not solvable analytically for most cases, there are some special cases for which an
analytical solution exists. While this analytical solution is independent of the probability distributions used,
the solution (and with it also the solvability) of the problem changes with a change of the cost function. We
will demonstrate the derivation of the analytical solution for cost function Gen2B given in equation (3.2). We
also assume the log-normal distributions in equation (3.3). For convenience, we show them here again:

L(a, t) = β|a− t|α + (1− β)a

1https://scipy.org/
2We use the method minimize_scalar of the package SciPy with parameter method='bounded'.
3We choose ϵ equal to ten times the machine epsilon for float64 in Python, as provided by the package NumPy’s method
np.finfo(float).eps.
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With the following distribution of random variables:

t ∼ logN (µpost, σpost)

a ∼ logN (µ∗

a, σa) with µ∗

a = argmin
µa

E[L(a, t)]

We want to solve for the expected loss given by

E[L(a, t)] =

∫︂

∞

0

∫︂

∞

0
L(a, t) p(a | µa, σa) p(t | µpost, σpost) p(t) dt da

While solving the integral directly is quite laborious, the solution is straightforward if we express it as the
expected value and make use of its linearity:

E[L(a, t)] = E[β|a− t|α + (1− β)a]

= β E[|a− t|α] + (1− β)E[a]

Since the expected value of the absolute difference in the first term cannot be solved for directly without
solving the integral (which is also quite demanding and does not generalize well to other cost functions),
we are now constraining ourselves to the cases where we do not need to resolve the absolute difference.
By constraining ourselves to α = 2n, ∀n ∈ N

+, the absolute difference can be ignored because of the even
exponent:

E[L(a, t)] = β E[(a− t)α] + (1− β)E[a]

Now, we still need to solve for the exponentiated difference. For natural values of α, we can do so by making
use of the binomial coefficient given by

(a− t)α =
α
∑︂

k=0

(︃

α

k

)︃

ak(−t)n−k

Of course, the parameter α can generally take on any real value in reality, but this approach only works for
natural values.
For the sake of simplicity, we are constraining ourselves to α = 2 for the remaining steps. This leads us to the
following expression:

E[L(a, t)] = β E[(a− t)2] + (1− β)E[a]

= β E[a2 − 2at+ t2] + (1− β)E[a]

= β(E[a2]− E[2at] + E[t2]) + (1− β)E[a]
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If we have exponents α > 2, α ∈ N
+, the binomial coefficient becomes much more complicated and its solution

contains exponents up to the value of α. Still, we can further resolve this equation for any arbitrary probability
distribution for a and t, as long as we know the closed form expressions for sufficiently high moments (up to
E[xα]) of the distributions.
Besides, we can assume independence between any occurrences of random variables. This may seem naive,
since the action a clearly depends on the target t by definition. However, because the objective function is to
be optimized with respect to a parameter of the action distribution, we are (at least in the context of finding
the optimum) free to choose this parameter, which eliminates this dependence. Exploiting this property, we
can further simplify the expression:

E[L(a, t)] = β(E[a2]− 2E[a]E[t] + E[t2]) + (1− β)E[a]

The first two moments of any distribution are given by the following expressions:
∫︂

∞

−∞

x2 p(x)dx = E[X2] = Var[X] + E[X]2
∫︂

∞

−∞

x p(x)dx = E[X]

For the case considered here, we can just plug in the respective values for the log-normal distribution:

E[X2] =

∫︂

∞

−∞

x2 p(x)dx = (eσ
2
− 1)e2µ+σ2

+ e2µ+σ2
= e2(µ+σ2)

E[X] =

∫︂

∞

−∞

x p(x)dx = eµ+
σ2

2

Plugged into our formula, this yields:

E[L(a, t)] = β(e2(µa+σ2
a) − 2eµa+µpost+

σ2
a+σ2post

2 + e2(µpost+σ2post) + (1− β)eµa+
σ2
a
2

We can now differentiate this and solve for its roots in order to find the optimum µ∗

a minimizing the expected
loss:

d

dµa

E[L(a, t)] = 2β(e2(µa+σ2
a) − 2eµa+µpost+

σ2
a+σ2post

2 ) + (1− β)eµa+
σ2
a
2

!
= 0

Solving this for µa leads to

µ∗

a = ln(eµpost+
σ2post

2 +
β − 1

2β
)−

3

2
σ2
a = ln(ze

σ2post
2 +

β − 1

2β
)−

3

2
σ2
a (3.6)

This closed-form solution already shows that the problem is not solvable for every arbitrary configuration of
parameters, since this solution is only defined if the logarithmized term is positive:

ze
σ2post

2 +
β − 1

2β
> 0
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Which is equivalent to

ze
σ2post

2 >
1− β

2β

This solution implies that the smaller β is, the higher the posterior uncertainty σpost, the target t or ultimately
its measurement z need to be in order for a solution to exist. Furthermore, the result of the logarithm in
equation (3.6) also needs to be ln(. . . ) > 3

2σ
2
a, since µa ≤ 0 is not allowed by definition - note that we

parameterize our log-normal distributions in positive space before they are transformed to log-space (−∞,∞)
and not directly in log-space, as it is often done. A more thorough investigation of the solvability of the
problem for different parameter configurations is presented in the next Section.

3.2.4. Solvability

The solvability of the problem is heavily influenced by the complex dynamics and interactions of the prior, cost
and uncertainty parameters. Since an analytical solution only exists in special cases (cf. Section 3.2.3), we
need other methods to explore the constraints for when a well-defined solution exists and when it does not.
To do so, we used the data set generated for training and testing the neural network (cf. Section 3.3) and
especially compared the parameter configurations for which the numerical solver could not find a solution with
the configurations for which it did find one. Since the numerical solver we used always outputs a proposed
solution regardless of whether a solution really exists, we discarded all solution proposals that lie exactly
on the bounds of the solution space that we constrained the numerical solver to or that heavily exceeded
a realistic range. For instance, we discarded all solutions with values µ∗

a > 40 since our stimuli all lie in
the interval [1.2, 4.8] and the value for µa should not really exceed this upper bound in the most cases. The
parameter configuration for which a solution exists is shown for cost function Gen2B in Figure 3.5. For the
solvability of the model with other cost functions, please consult Appendix A.3 and A.4.
In case of the Gen2B scenario, we can identify an interaction between α and β. There is a linear threshold
between the values of the two parameters, such that smaller values of β require bigger values of α in order
for a solution to exist. In general, both cost function parameters θcost = {α, β} are not allowed to become
too small or else the problem is not solvable. The value of β seems to almost categorically need to surpass
the value of 0.5 to guarantee existence of a solution. This is not that clear in the plot in Figure 3.5 since we
already incorporated these insights into the generation of the data set, which hence does not contain a lot of
samples with low β.
It is also noteworthy that a solution cannot be found for small targets t if the value of α gets too big. This
is most likely not a problem of the model specification itself but rather a numerical issue, since α defines
the exponent of the cost function’s accuracy-term which can lead to extremely high or extremely low values,
depending on the exponentiated value.
The solvability always depends on more than the relationship of a single pair of parameters but also other
parameters. However, since the parameter space of our model is quite high-dimensional, it is difficult to
identify all of these interdependencies between the different parameters.
Please keep in mind that these results and insights only apply to the Gen2B scenario. If one wishes to use
another cost function or exchange other components of the model, this will most likely influence the subsets
of the parameter space for which a solution exists. Therefore, one needs to examine the dynamics of their
model’s parameters carefully for each new model specification and adjust the inputs on which the neural
network is trained accordingly, in order for our framework to produce good results. Our method can only
work reliably if the neural network was trained on a set of parameters for which solutions exist and that are
realistic in the sense that the combination of model and parameters can re-produce empirical data.
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Figure 3.5.: Solvability of the Problem for different Parameter Configurations - Histograms of samples with
(blue) and without (red) existing solution. The histogram of samples without existing solutions
is plotted above the histogram of samples with existing solutions, since we focus on the cases
where a solution does not exist here. There can be complex and unforeseen interactions between
different parameters that determine whether a solution exists and can be found by the numerical
solver.
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3.3. Neural Network

The numerical optimization introduced in Section 3.2.2 is very costly in terms of computation time. Since we
need the optimization within our Markov Chain Monte Carlo Sampling (cf. Section 3.4) to calculate µa for
each sample proposal, we need a means to speed up the computation, to make MCMC Sampling feasible. For
that purpose, we employ a neural network f(z,θcost,θprior,σ) as an estimator for the optimal µ∗

a given the
cost function parameters θcost = {α, β}, the latent measurement z, the respective perceptual uncertainty and
motor variability σ = {σp, σa} and the parameters defining the prior distribution θprior = {µprior, σprior}. The
parameters of the cost function and prior distribution given here can generally be substituted with any other
arbitrary cost function or distribution, we would only need to train a new network in order to do so.
Section 3.3.1 introduces the architecture and details of our implementation, followed by training and evaluation
procedures in Section 3.3.2.

3.3.1. Architecture

The architecture of our network consists of one input, four hidden and one output layer. The number of inputs
(for the Gen2B cost function) is given by all cost parameters θ = {α, β}, the value of the sensory variable
z, the uncertainties of the perceptual and action stage {σp, σa} and the parameters θprior = {µprior, σprior}
defining the subject’s prior belief about the stimulus distribution, thus ninput = 7. The architecture is shown in
Figure 3.6.
Intuitively, one would use the target t as input for the neural network. Yet, this is not what we need here.
The neural network ought not to approximate a general optimization for the optimal action to minimize the
expected cost with respect to the target t but with respect to the subject’s sensory estimate z of the true target.
Thus, the network approximates not only the optimization process but also the inference process of the subject
over the true target t, given only the noisy measurement z provided by their sensory system. It is true that
we do not have access to the true value of the measurement z, so how can we use it as input to our neural
network? By integrating the neural network as a component in our probabilistic model, we can treat the
measurement z as latent variable in the MCMC sampling process and perform inference over its value as well.
Thereby, we also get estimates of how the target is perceived through the subject’s sensory system. Still, this
measurement is only an auxiliary mathematical variable to represent the subject’s sensory information in their
inference over the true state of the world. We do not make any claims about whether these measurements are
or can be explicitly represented in the brain.
The four hidden layers consist of [16, 64, 16, 8] nodes, respectively. The last hidden layer has a sigmoid
activation function, while the first three hidden layers have tanh activation function.
The output of the network is given by a single node, which approximates the value of µ for which the expected
loss becomes minimal – to be exact, it approximates the median â of the action distribution that minimizes
the expected loss E[L(a, t)], which can then be used to calculate the value of µ = log â which produces a
log-normal distribution with said median. We chose the neural network to output the median of the resulting
distribution instead of the distribution parameter µ directly, since the parameter µ of a log-normal distribution
is hard to interpret in a straight-forward fashion, while the median allows to do so more intuitively.
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Figure 3.6.: NetworkArchitecture–The network receives the cost function parameters θcost, prior parameters
θprior as well as the sensory information z and the uncertainties σ = {σp, σa} as input (thus
ninput = 7) and outputs the value of µ∗

a that minimizes the expected loss, trained on a data set of
samples which were numerically solved for µ, according to Section 3.2.2. There are four hidden
layers with [32, 64, 16, 8] nodes each. Hidden layers all have tanh-activation functions except the
last layer which has ReLU activation. The output layer also has ReLU activation to constrain the
output to the positive domain. The number of nodes in the image does not correspond to the
actual number of nodes for all layers for visual reasons.

3.3.2. Data, Training and Evaluation

Especially in scenarios like ours, where the existence of a solution strongly depends on the input parameters
(cf. Section 3.2.4) and we can easily leverage knowledge about realistic parameter values (e.g. the perceptual
uncertainty will be rather small in a healthy subject), the training and test data needs to be chosen carefully.
Thereby, we can achieve faster and more stable training than if we were to just sample the data in the
complete domain of real numbers. We evaluate the performance of the network in terms of accuracy as well
as computation time in contrast to the numerical solver.

Training and Test Data

The training and test data for our network was generated by randomly sampling the cost function parameters
θcost, the uncertainties {σa, σp}, the prior parameters θprior and the target t as well as its latent measurement
z for each synthetic trial. The distribution we use for generating these samples are constrained to produce
realistic values that are most likely to occur in the sampling process when using real empirical data. For
instance, our network does not need to be trained for high perceptual uncertainties σp, since we can assume
that the sensory system of a healthy subject can produce a somewhat reliable measurement of the real stimulus.
The exact priors for cost function Gen2B are shown in table 3.2.
The chosen support of each distribution is based on our experiences, regarding which values for different
cost function parameters are most likely to result in realistic cost functions or are possible with the chosen
parameterization at all. We also confirmed our assumptions with prior predictive checks, which are introduced
along the probabilistic model in Section 3.4.1.
The support of the target distribution would either need to be adjusted for experiments with targets in a

45



completely different range or the targets of such experiments would need to be transformed into the scale
supported by our model. In this case, all parameters must be interpreted on this transformed scale of target
values or an inverse transformation for the estimated parameters needs to be derived.

Parameter Distribution Distribution Parameters
α Truncated Normal Ntrunc(µ, σ) (µ, σ) = (1.0, 0.8) in [0.01, 4]
β x ∼ Beta(α, β)withβ = 0.4 + 0.6x (α, β) = (3, 2)
σa Half-Normal H(σ) s.t. 95%-quantile q.95 = .2
σp Half-Normal H(σ) s.t. 95%-quantile q.95 = .2
t Uniform U(at, bt) (at, bt) = (.1, 4.8)
z logN (µ, σ) (µ, σ) = (t, σp)

µprior Truncated Normal Ntrunc(µ, σ) (µ, σ) = ( bt−at
2 , 2.0) in [.1, 4.8]

σprior Half-Normal H(σ) s.t. 95%-quantile q.95 = .2

Table 3.2.: Priors for Data Generation - The different distributions for generating synthetic data for training
the neural network. Note that the distribution-specific parameters in the right columns do not
correspond to the model parameters in the left-most column in any way. This table only displays
the priors for the cost function Gen2B.

We then solve each sampled configuration of parameters {θcost, z,θprior,σ} and pass it on to our numerical
solver, which is described in Section 3.2.2. Thereby, we obtain the numerical solution for the optimal µ∗

a

minimizing the expected cost for each particular parameter configuration. We use these as the desired output
in our training and test data.
The complete data set consists of ndata = 1, 000, 000 data points, of which nfailed = 165, 145 samples were
discarded because the optimization failed. This can happen because some parameter configurations might
not have a solution due to the natural properties of the model they define. We tried to avoid this by carefully
analyzing the solvability of the problem in different subspaces of the complete parameter space and adjusted
our data generation priors accordingly. Still, this could not be avoided completely. For further details on the
numerical solving and optimization process, please consult Section 3.2.
From these remaining nsolvable = 834, 855 samples, 80% were taken to form the training set and the other
20% to comprise the test set, resulting in ntrain = 661, 575 training samples and ntest = 173, 280 test samples.
Again, these numbers only apply to cost function Gen2B.

Training Procedure

For the training, we provided all of the training data set with a batch size of 32 for 600 epochs and used a
validation split of 0.2. The loss for the neural network LNN during training is defined by the Mean Squared
Error (MSE) between the numerical solution for the optimal µ∗

a and the network’s prediction µ
predicted
a , thus

LNN(µ∗

a, µ
predicted
a ) = ||µ∗

a − µpredicted
a ||2

We also use early stopping on the MSE loss with the patience set to 60, usually leading to early convergence
before the 600 epochs are fully rolled out. For the tuning of weights, we use the RMSprop-optimizer (Tieleman
et al., 2012) with a learning rate of 0.001 and ρ = 0.9.
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Evaluation Procedure

In order to validate that our networks approximate the correct solution, we use the numerically solved samples
in our test set, consisting of ntest = 173, 280 samples for cost function Gen2B and evaluated the difference to
the numerical solutions. Since we use numerical methods to solve for each set of parameters (see Section
3.2.2 for more details), the solutions in our test set do not contain the exact solution, but only a numerical
approximation. While it is crucial to design an accurate neural network in order to prevent strong error
propagation, we still only need a solution that is sufficiently good in order for the MCMC Sampling to work
reliably. The results of the evaluation of the neural network are shown in Figure 3.7. On the training data, our
network achieved a mean absolute error (MAE) of 0.016, a root mean squared error (RMSE) of 0.028 and a
mean absolute absolute relative error (MARE) of 0.045. On the test set, it achieved a MAE of 0.016 as well
and a slightly better RMSE of 0.028 and MARE of 0.041. Since the targets in most of our experimental and
generated synthetic data (cf. Section 4) lie within the range of 1 to 5 (arbitrary unit), we judge an accuracy of
about one to two hundredths to be sufficiently accurate.

Figure 3.7.: Performance of the Neural Network - On the training set consisting of ntrain = 661, 575 samples
our network achieved a MAE of 0.016, a RMSE of 0.029 and a MARE of 0.045 when predicting the
numerically found optimal µ∗

a. On the test set consisting of ntest = 173, 280 samples, our network
achieved a MAE of 0.016, a RMSE of 0.028 and a MARE of 0.041. The grey dashed line shows
the optimal performance, on which all points would lie if each prediction was exactly equal to
the ground truth.

Speed-Up in Computation Time

By using a neural network as an approximator for the solution of the optimization problem, we achieve a
strong boost in the necessary computation time. Figure 3.8 shows the necessary computation time (y-axis,
please mind the log-scaling) for solving a set of n samples (x-axis) with the numerical solver or the neural
network either as a batch of all samples or by iteratively passing each parameter configuration as a batch with
only one data point. By using a neural network, we are about 1,000 to 10,000 times faster than the numerical
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solver. This makes it feasible to use our problem within a Markov Chain Monte Carlo setting, since MCMC
sampling needs thousands of samples to ensure convergence to the stationary posterior distribution. If we
were not using a neural network, inferring the model parameters would take an unreasonable amount of time.
We still need to run the numerical solver on a huge amount of data points in order to be able to train the
network, which will take a lot of time, but the respective network can be used as many times as needed after
being trained once. The speed up in the MCMC sampling is twofold. Obviously, a forward pass in a neural
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Figure 3.8.: Computation Time with and without Neural Network - Computation time of the numerical solver
and of the neural network with data batches of different sizes. We passed the data to the neural
network as one batch with all data points or iteratively as single-datum-batches. Either way, we
observe a speed-up factor of about 1,000-10,000.

network needs less time to compute a solution than using a numerical solver which potentially uses iterative
methods. Furthermore, by using a neural network in our probabilistic model, we preserve differentiability
of the model which enables us to use gradient-based kernels in the MCMC inference. Since gradient-based
approaches to MCMC methods can employ additional knowledge about the parameter space it draws the
posterior samples from, we also gain increased sample efficiency which reduces the number of necessary
samples to obtain good results.
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3.4. Parameter Inference

For inference of the cost function parameters θ as well as the perceptual and motor uncertainties σ =
{σa, σp}, we use Markov Chain Monte Carlo (MCMC) sampling. Since MCMC sampling requires drawing a
lot of proposals for the parameters we want to infer and solving the optimization each time numerically is
computationally very expensive, we trained a neural network which approximates the numerical solutions as
described in Section 3.3. As shown in Section 3.3.2, this approach speeds up computation by about three
orders of magnitude.
By employing MCMC, we obtain estimations of the true cost function parameters, the uncertainties and the
priors beliefs of the subject. Further, since MCMC is a Bayesian method, we also have a measure of confidence
for our estimations.
In Section 3.4.1 the probabilistic model including our choice of the prior and likelihood distributions is
introduced, which is then validated by prior predictive checks in Section 3.4.2. Section 3.4.3 describes
the sampling process including our hyperparameter and kernel choices. The whole MCMC process was
implemented in Python using TensorFlow Probability (Dillon et al., 2017).

3.4.1. Probabilistic Model

The probabilistic model used for the inference by Markov Chain Monte Carlo sampling is shown in Figure 3.9.
The prior distributions underlying each variable in the model are roughly the same as those used in the data
generation for the neural network, except for the targets ti, which – together with a set of action observations
ai for each trial i – are part of the observed data and thus do not need a prior for they are not inferred. The
prior distributions for each latent variable were first chosen as educated guesses based on solvability of the
problem for different ranges of the parameters as shown in Section 3.2.4. For example, the distribution for β
is transformed by scaling and shifting such that the overall range of the samples is not [0, 1], as it is the case
for the original beta distribution, but [0.4, 1.0]. This stems from our solvability analysis which has shown that
most parameter configurations with β < 0.4 do not have an optimal solution. The uncertainties σ are chosen
to be very small, with the 95%-quantile q0.95 of Half-Normal distributions H(σ) chosen such that q0.95 = 0.2,
since empirical data shows only weak variability within the perceptual and motor dimensions. It is essential
here, that σp and σprior are sampled from the same range in order to allow for similar magnitudes and thus
reasonable values of ratios σp/σprior, since this crucially determines how strongly the subject relies on their
prior knowledge in contrast to their sensory information from the measurements zi.
The range for µprior is chosen such that it cannot exceed the biggest values of the observed targets ti, since
we judge prior beliefs outside of the stimulus distribution to be nonsensical. Our choice of priors is also
further validated with prior predictive checks in Section 3.4.2. The likelihoods of the measurements zi and
actions ai are chosen as log-normal distributions. The likelihood distribution for the measurements can easily
be justified to be log-normal because log-normal distributions implicitly implement the Weber-Fechner-Law
(cf. Section 2.1.1). Moreover, the log-normal distribution’s probability mass density is naturally skewed
towards smaller values which can also help to explain undershoots frequently found in (re-)production tasks
and perception-action-tasks (cf. Section 2.1.5). The likelihood of the action distribution is also chosen as a
log-normal distribution since we can observe signal-dependent noise in most behavioral data. That is, the
noise of a distribution increases with increased signal strengths. In our context, this means that we observe an
increase in motor variability for larger stimuli – a property that log-normal distributions also naturally possess.
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zi ∼ logN (ti, σp)

θcost = {α, β}

α ∼ logN (1.0, 0.8) in [0.01, 4]
β ∼ 0.4 + 0.6xwithx ∼ Beta(3, 2)

σa ∼ H(0.1)

σp ∼ H(0.1)

θprior = {µprior, σprior}

µprior ∼ logN (
tmax − tmin

2
, 2.0) in [.1, 4.8]

σprior ∼ H(0.1)

µ∗

a,i = argmin
µa,i

E[L(ai, ti)]

ai ∼ logN (µ∗

a,i, σa) tr
ia

l 
𝑖=1

,…
,𝑛

Neural Network

  𝜎𝑝𝑟𝑖𝑜𝑟
 𝜇𝑝𝑟𝑖𝑜𝑟

Figure 3.9.: Probabilistic Model - Model in our framework using n trials of an arbitrary experiment and as
implemented in the MCMC sampling. The observed values are sets of targets ti and actions ai.
Treating the measurements zi as latent variables makes the problem strongly high-dimensional,
since one needs to be inferred for each target observation. The neural network receives the per-
ceptual uncertainty σp, motor variability σa, cost function parameters θcost and prior parameters
(µprior, σprior and returns the approximately optimal action distribution parameter µ∗

a. Distributions
H denote Half-Normal distributions and some log-normal distributions are truncated to intervals
[a, b].

The set of latent variables that need to be inferred is six-dimensional already with the free parameters of the
model – the prior parameters θprior, uncertainties σ = {σp, σa} and cost parameters θcost = {α, β}. But since
we treat the subject’s measurements zi as latent variables as well, the dimensionality of the model increases
rapidly. A measurement zi is sampled in the sensory space given by a stochastic log-normal transformation
for each target ti. We do not take any position regarding the existence of explicit scalar representations
of this sensory information in the brain, but sampling the measurements explicitly has the advantage of
easily interpretable subjective values for each target, which may help explain why certain trials resulted in
certain actions. This also allows for noisy inputs to the optimization problem which aligns very well with our
assumption that subjects do not have access to the ground truths of the target values.
Yet, consider a data set consisting of 200 trials, which we usually used in our synthetic data sets for evaluation
of our methods (cf. Section 4.1). Since each trial has its own target ti and action ai, it also has a latent
measurement zi. This makes the parameter space in which we need to perform the inference 206-dimensional
and thus a really hard inference problem.
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3.4.2. Prior Predictive Checks

In order to validate our choice of priors and not use handwavy educated guesses, we performed prior predictive
checks with the priors we ultimately decided for. We sampled 1,000 configurations of parameters as prior
predictive samples from our prior distributions and solved the model for an experimental setup of eight targets
with 25 trials each. Therefore, we generated 200 actions in total for each prior predictive sample. The results
are shown in Figure 3.10.
The prior predictive checks show that our choice of priors allows for a wide range of possible actions. The
mean of the probability mass of the joint prior distribution is distributed in a way that favors undershoots a
little, which is exactly the behavior we want to model. Still, the priors allow for freedom in the way the actions
are distributed around the target. Also, the priors should represent prior knowledge we have as researchers.
This includes the human tendency to show certain response patterns like regression-to-the-mean behavior or
undershoots (cf. Section 2.1.5). In summary, the prior predictive checks validate our choice of priors.
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Figure 3.10.: Prior Predictive Checks – We have drawn 1,000 prior predictive samples from our prior distribu-
tions. Each sampled parameter configuration was then fed into our model and we generated
actions for 8 targets with 25 trials each per parameter configuration. The left plot shows box
plots for each target, while the right plot shows the median action and the 95% interval of all
200,000 generated actions. The grey dashed line denotes equality of target t and action a.

3.4.3. Sampling Process

The way in which the posterior distribution is inferred in MCMC sampling is strongly dependent on the
used kernel. For example, we could use random-walk methods for exploring the posterior distribution, like
the classic Metropolis-Hastings-Algorithm (MH) (Metropolis et al., 1953; Hastings, 1970). In most cases,
those MH-methods are outperformed by Hamiltonian Monte Carlo (HMC) approaches which make use of the
geometrical properties of the target distributions spaces they try to explore and thus usually converge to the
target distributions much faster (Betancourt, 2018). Ultimately, we decided for the gradient-based No-U-Turn-
Sampling (NUTS)-algorithm (Hoffman et al., 2014), which is a state-of-the-art algorithm in the domain of
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Hamiltonian Monte Carlo, applying a more sophisticated method for determining the next sampling steps and
needing much less manual tuning. In order to exploit the geometrical properties of the target distribution, our
model must be fully differentiable for NUTS to work reliably. While most numerical solutions work iteratively
and are thus usually not differentiable, simply using a numerical solver within our probabilistic model will not
allow us to make use of the advantages of HMC-methods. By approximating the numerical solution with a
neural network, we not only speed up the computation considerably, but also maintain differentiability, since
neural networks are differentiable by definition in order to be trainable via backpropagation at all. For further
details on our model, consult the previous Section 3.4.1.
For each MCMC run, we ran eight chains with 20,000 steps after warming up our model with 5,000 burn-in
steps to ensure that the chains are actually sampling from a stationary posterior distribution. The initial states
for each chain were drawn from the prior distributions of each parameter and the sensory variables zi were
initialized on noisy versions of the observed targets, given by N (ti, 0.1).
As introduced already, we are using a NUTS-kernel. This is supported by a Dual-Averaging-Step-Size-Adaptation
(Section 3.2 of Hoffman et al. (2014)) with 4,000 adaptation steps and a target acceptance probability of 0.6.
Additionally, we use bijectors on the parameters to map them from the unconstrained parameter samples from
which MCMC is sampling into their respective supported domains. Parameters with only positive support (i.e.
α, uncertainties σa and σp, prior distribution parameters µprior and σprior, measurements zi), are constrained
to the real, positive domain using a softplus bijector, which is a smoothed version of a ReLU-function. For
a random variable X transformed via the softplus bijector g(·) to a positive real variable Y , the forward
transformation is given by Y = g(X) = log(1 + eX).
Since the parameter β is responsible for the weighted combination of the cost for deviating from the target
t and the effort cost of performing the action a itself, it is already constrained to the range [0, 1]. Further
investigation of the solvability for different parameter configurations (cf. Section 3.2.4) constrained the range
of β to [0.4, 1.0] in order for a solution to the optimization problem to exist at all. Thus, we use a sigmoid
bijector which applies the logistic sigmoid function to the non-transformed parameter proposals from (−∞,∞)
to obtain a transformed version of them constrained to [0, 1].
Since the inference problem becomes highly multidimensional by treating the measurement zi for each single
target ti as a latent variable that also needs to be inferred, the inference becomes extremely difficult. In some
cases, the sampled Markov chains were stuck in their initial state for the whole sampling process. To avoid
distorting the inferred posterior distributions from the converged stationary chains with the stuck chains, we
removed these after each run. To achieve full chain-efficiency for inferring the posterior distributions, further
fine tuning of our model might be necessary.
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4. Results

In this chapter, we benchmark our method over different synthetically generated data sets. We generated
data sets representing characteristic response patterns as described in Section 2.1.5 and randomly generated
parameter configurations over wide ranges of the respective parameters. The complete evaluation on synthetic
data is shown in Section 4.1. Furthermore, we retrieved two data sets with empiric data of a bean bag
throwing task and a puck sliding task. The results of our method on these data is presented in Section 4.2.

4.1. Synthetic Data

Before evaluating our method on empirical data, we generated synthetic sets of data for which we know the
ground truth values that should be recovered by our approach. Thereby, we can explore the limits of our
implementation within a controlled environment.
The performance of our method on manually tuned regimes representing different characteristic behavior
like the ones introduced in Section 2.1.5 is evaluated in Section 4.1.2. Results for a large-scale evaluation of
our methods on randomly generated synthetic data is then presented in Section 4.1.4. Furthermore, we also
examined the influence of the amount of trials in the experimental setup on the performance of our method
in Section 4.1.5.

The synthetic data sets can be divided into a first, manually tuned data set for which we identified different
parameter configurations that result in qualitatively different behavior. We will refer to these different data
sets as different ‘regimes’ in the following. The regimes can be divided into the categories ‘Regression to
the Mean’, ‘Undershoot via Prior’, ‘Undershoot via Cost’ and ‘Hitting Target’. For designing these regimes, we
identified different patterns from empirical behavioral data (Petzschner and Glasauer, 2011; Jazayeri and
Shadlen, 2010; Neupärtl et al., 2020; Willey and Liu, 2018) and decided on how they can come about with
different parameter configurations of our model by simulating the results with predictive forward passes
through our model. During these simulations, we learned that the cost function parameter α has only minor
influence on the resulting behavioral data. Because of that, we decided to fix α = 2.0 and by that preserve
the possibility of comparing our model using an analytically tractable closed-form solution (cf. 3.2.3) and
the neural network as approximator for the parameter µ∗

a of the Bayesian actor’s action distribution. The
identified regimes and their parameter configurations are shown in Table 4.1.
The Hitting Target regime represents a subject which is capable of hitting the targets accurately. They
completely rely on the sensory evidence by having low perceptual uncertainty with respect to their prior
uncertainty. They also have a rather high value of β and thus put a lot of emphasis on the accuracy of hitting
the target without applying much cost for the necessary effort for performing the action.
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Undershoot via Cost

α =2.00

β =0.60
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Regression to the Mean

α =2.0

β =0.80

µprior =3.40

σprior =0.05

σa =0.10

σp =0.10

1.2 1.7 2.2 2.7 3.3 3.8 4.3 4.8
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Table 4.1.: Synthetic Regimes – Manually defined regimes that resemble characteristic response patterns of
human behavior in (re-)production tasks. The plot on the right shows the median actions with
their 95%-HDI over the targets. Orange dots are the generated actions, red dashed line denotes
equality between action and target and the solid grey line shows the value of µprior.
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The Undershoot via Prior regime shows undershoots as they are observed quite often in empirical data (cf.
Section 2.1.5). These undershoots are generated by having a high reliance on the prior in contrast to the
sensory evidence by having a low prior uncertainty. We also use a high value for β, such that the observed
effect is really only caused by the prior and not by effort costs.
In contrast to this, the Undershoot via Cost regime also generated undershoots, but caused by the parameter β
instead of the prior. The main difference herein is that the generated actions do not tend towards the prior
but are rather consistently set below the real target, since the low value of β puts the main focus on the effort
cost instead of the cost for missing the target.
The Regression to the Mean regime generates a regression to the mean behavior by really strong strong reliance
on the prior. Also, the mean of the prior is much higher than in the Undershoot via Cost regime, thus not only
creating undershoots but also overshoots for lower stimulus intensities.
A second data set consists of 100 different parameter configurations randomly drawn from the priors also
used in our MCMC process and the respective simulated actions (8 targets á 25 trials each). Thereby, we can
acquire statistics on how well our method performs on a larger scale, e.g. by determining how often the true
value lies within the 94% high density interval (HDI) of the inferred posterior distribution or by calculating
the mean absolute error (MAE) or root mean squared error (RMSE) to the true value when using the inferred
posterior’s mean as a predictor.

4.1.1. Numerical Versus Analytical Results

As a proof of concept, we tried to tune most of the synthetic regimes such that they remain analytically
tractable and compare the inference results incorporating the analytical solution or the neural network in
our probabilistic model (cf. Section 3.4.1). Since we have shown in Section 3.2.3 that there is a closed form
solution to the problem if we choose α = 2 and because our experience with the data has shown that the
influence of α is not that big in comparison to the other parameters, we also tried to choose α = 2 in all
manually tuned regimes. Thereby, we can define our usual probabilistic model using the pre-trained neural
network (cf. Section 3.3) and another model using the closed-form analytical solution to perform inference
over the data. Figure 4.1 shows the results of the model with the analytical solution, which we assume to be
the ground truth we want to estimate with our approximate inference, and with the network solution for the
Regression to the Mean data set. The results show that the posteriors inferred by our model using the neural
network are the same or at least similar to the posteriors inferred by a model using the analytical solution.
The posterior for the parameters β and σa almost completely cover each other with no remarkable differences.
For parameters µprior, σprior and σp, the posterior distributions are a little more skewed or shifted from the
results with the analytical model but still capture approximately the same shape and range of values. We
cannot compare the parameter α, since it is held constant at its true value of 2.0 for the analytical model to
enable us to use the analytical solution, since we only know the closed-form solution for α = 2.0 (cf. Section
3.2.3).
Both models reproduce the observed actions quite well. The mean and 95%-HDIs of the posterior predictive
samples are almost exactly the same for the analytical model and the model using our neural network.
The same results for the other regimes can be found in Appendix A.5 to A.7. In all other regimes, the analytical
model and our model both produce the same means and HDIs for the posterior predictive samples, which
almost completely capture the set of observed actions. However, the inferred posterior distributions differ.
For the Undershoot via Prior regime, both models produce very similar posterior distributions. The differences
increase for the Undershoot via Cost regime, but still the means of the inferred posterior distributions behave
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Figure 4.1.: MCMC Results with Analytical vs. Neural Network in the Bayesian Actor Model - Inferred
posterior distributions on the Regression to the Mean data set over the model parameters θ

using an analytical solver (red) and a neural network (black) within the model to calculate the
action distribution’s optimal parameter µ∗

a. Markers on the axis denote the bounds of the 95%
high density interval for the respective parameters. Dashed black lines show the ground truth
within the used data set. Black and red dots show the mean of the inferred posterior distribution
with the analytical solver and the neural network, respectively. The right-most plot shows the
posterior predictive samples for each inference method in the respective colors as well as the
true observations in orange. HDIs shown are the 95%-HDIs. Results for other regimes are shown
in Appendix A.5 to A.7.
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about the same.
For the Hitting Target regime, the results seem to differ more strongly. For the prior parameters, the posterior
are about the same. For σa and σp the differences seem even more extreme but are probably due to strong
peaks for very low values, which we did not find a detailed explanation for yet. They probably come about
because the results of the Hitting Target regime are the most unstable and overall worst of all regimes – as we
will present in the next section –, which is probably due to our model being designed for regression to the
mean and undershoot behavior and not for subjects hitting the target on average over the whole stimulus
range.
Furthermore, these results should be examined again without inferring α in the model with our neural network,
since it is also not inferred in the model using the analytical solution and thus our model needs to solve a
harder inference problem, which reduces comparability between the two models.

4.1.2. Recovery of Characteristic Parameter Configurations

The results from the four regimes introduced in Table 4.1 are shown in Figure 4.2 and the exact values are
listed in Table 4.2. Overall, the inference works quite well but shows some weaknesses in different regimes.
Moreover, not all regimes exhibit favorable MCMC diagnostics.
For the Hitting Target regime, the cost function is recovered really accurately. However, the prior is completely
off, which can be explained by its weak influence on the resulting actions, since this regime is constructed
with a strong focus of the subject on its sensory information. Also, the perceptual uncertainty and motor
variability show rather high inference errors in comparison to the error in these parameters for other regimes.
When we take a look at the MCMC diagnostics, we find really concerning effective samples sizes (ESS) and
values of R̂. Remembering that we draw 20,000 samples per chain, effective samples sizes of 10 to 30 are
astonishingly bad. The convergence diagnostic R̂ should be as close to 1.0 as possible, in the best case not
bigger than 1.02. This is violated for all parameters in this regime. The chains of this inference run also
converged to two different points. We see that the sampling process is overall really unstable here and it is
somehow remarkable that the inference yields results anywhere near the true values for some parameters.
The bad results in this regime probably become about because it represents a case our model was not designed
for, since it the regime does not correspond to any of the characteristic response patterns humans show in
reproduction tasks, e.g. regression to the mean behavior or undershoots. Especially the high value of σprior is
something our priors are not suited for. While our model allows for high ratio between σp and σprior to allow
for low reliance of the subject on either the prior or the sensory evidence, our priors do not allow for high
absolute value like σprior = 2.0 (cf. Table 3.2). If one can find another parameter configuration giving rise to
the same behavior, this experiment should be repeated.
In the Undershoot via Prior regime, the cost function is not recovered very well. The 95%-HDI of the inferred
cost function barely contains the true cost function, which probably arises because the inference fails to
capture the increased value of β with an error of 0.2. This also makes sense in a regime where the behavior is
primarily generated through influence of the prior. Since the prior has the most influence on the resulting
behavior, it is easily inferred and vice versa it is much harder to infer the true values of the cost function.
The inference of α fails with an error of 0.48. Inaccurate inference of α is a pattern that we will frequently face
in the results. This speaks for a small influence of alpha on the resulting cost function overall and could be
improved by trying an alternative parameterization or functional form of the cost function used in our model.
However, the inference of the variabilities σa, σp and σprior is accurate with errors not exceeding 0.02 and the
inferred posterior mean of σa being equal to the ground truth value. The value for µprior is also good with an
error of only 0.13.
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Figure 4.2.: Results from Inference over Regimes– Inferred cost functions and priorswith posterior predictive
checks and inferred posterior parameters.
Color legend – True values: red; Inferred means: black; 95%-HDI: grey; targets: dashed grey lines;
actions: orange. Black dots at the x-axes denote posterior means.
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The good quality of this results is also evident in the promising MCMC diagnostics. The values of R̂ are all
equal to 1.00 and the ESS are as high as for no other regime. The parameters α, β and µprior even exceed
10,000 effective samples. Only σp and σprior cannot accumulate a thousand effective samples, while still being
inferred reliably. Moreover, the ESS for σp is much higher than for σp and σprior with a value of about 4,500.
This, again, is a common pattern in our results. Usually, σa is easier to infer than the other variabilities because
it can be inferred from the observed actions directly and is not hidden deeper in the model like it is the case
for σp and σprior. This also shows in the MCMC diagnostics.
The results of the Undershoot via Cost regime are also very good. Both, the cost function as well as the
prior distribution are inferred quite well. The same reasoning why the cost function was hard to infer in the
Undershoot via Prior regime applies here in the positive direction; because the cost function primarily shapes
the resulting behavior here, it is much easier to infer the respective cost function parameters.
In line with that, the inferred mean of the perceptual uncertainty σp is exactly at the true value and the
inferred means for the parameters β, σa and σprior do not deviate more than 0.02 from the respective true
values. Only α and µprior are not inferred that well.
The inference of α is off with an error of 0.33 but, again, does not seem to have too much influence on the
resulting behavior and cost function.
The inference of µprior is still good with an error of 0.26. Potentially even the small inference errors in the
other parameters can lead to a stronger deviation in another parameter – in this case µprior – in order to still
capture the observed behavior well.
The MCMC diagnostics are also good. The values of R̂ are either close to one or near enough to be acceptable.
The effective samples sizes are still not very large, but are also acceptable for the parameters α, β and µprior.
They are only in the range of a few hundreds for parameters σa, σp and σprior, which usually is not enough
since the ESS should be at least at 2,000 and which also shows in increased values of R̂. However, this does
not seem to disturb the inference of the concerned parameters. Again, this is a common pattern in our results:
Some parameters, mostly the variabilities σ exhibit very low ESS values.
For the Regression to the Mean regime, the inferred cost function is estimated well and while the inferred prior
distribution is a little narrower than the original distribution, the overall behavior is also captured quite well
here.
We see, that the inferred cost function captures the behavior of the original cost function well without inferring
the parameter α very well, since its inferred value shows an error of 0.51. Again, this speaks for an overall low
influence of α in the current parameterization of the model. Parameters β and σa are inferred with errors not
bigger than 0.04. The inference of µprior is also quite accurate with an error of only 0.11, however σprior has
an error of 0.06. The inferred value for σp is also far off with an error of 0.16, since the variabilities usually
always take on values σ ≤ 0.3.
The MCMC diagnostics also look good with R̂ ≤ 1.01 for all parameters and the effective samples sizes are
again really low for the variabilities σp and σprior. While the results of the inference in this regime are not the
prime example of good inference, the results are still not bad. However, it is a little bit concerning that the
effective sample size for µprior is only at about 760 and that the error for σprior is rather high. Especially in a
regime that relies a lot on the prior for generating the observed behavior, the prior parameters should be easy
to recover, which does not seem to be the case here.
It is noteworthy, that the 95%-HDI of the inferred cost function in Figure 4.2 becomes almost infinitesimal
at the point where a = t − 1. This is most likely due to the nature of the cost function. As one can see in
equation (3.2), the exponentiated term in the first term of the cost function becomes a− t = 1. Since 1 does
not change to the power of anything, there is no variability there except from the effort term (1− β)a which
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Regime Name Parameter True Value 95% HDI Accuracy MCMC Statistics
Mean |Error| R̂ ESS

Hitting Target

α 2.00 [0.95, 3.69] 2.28 0.28 1.16 24.84
β 0.90 [0.67, 1.00] 0.89 0.01 1.22 19.48
σa 0.10 [0.84, 4.80] 0.17 0.07 1.28 16.49
σp 0.20 [0.02, 0.64] 0.07 0.13 1.65 9.74

µprior 3.00 [0.08, 0.22] 3.91 0.91 1.14 27.94
σprior 2.00 [0.00, 0.19] 0.27 1.73 1.63 9.77

Undershoot via Prior

α 2.00 [0.16, 2.81] 1.52 0.48 1.00 15,227.92
β 0.95 [0.53, 0.96] 0.75 0.20 1.00 14,287.70
σa 0.10 [0.09, 0.12] 0.10 0.00 1.00 4,458.11
σp 0.10 [0.04, 0.24] 0.12 0.02 1.00 949.23

µprior 1.50 [1.42, 1.94] 1.63 0.13 1.00 11,262.45
σprior 0.05 [0.02, 0.12] 0.06 0.01 1.00 970.19

Undershoot via Cost

α 2.00 [1.40, 3.33] 2.33 0.33 1.00 1,984.55
β 0.60 [0.48, 0.79] 0.62 0.02 1.00 2,190.42
σa 0.10 [0.02, 0.14] 0.08 0.02 1.03 370.97
σp 0.10 [0.03, 0.14] 0.10 0.00 1.02 432.58

µprior 2.50 [0.59, 3.94] 2.24 0.26 1.00 3,652.74
σprior 0.30 [0.12, 0.43] 0.28 0.02 1.01 950.10

Regression to the Mean

α 2.00 [0.18, 2.75] 1.49 0.51 1.01 1,198.10
β 0.80 [0.55, 0.97] 0.76 0.04 1.00 7,720.34
σa 0.10 [0.10, 0.12] 0.11 0.01 1.00 3,997.34
σp 0.30 [0.03, 0.25] 0.14 0.16 1.01 779.48

µprior 3.00 [2.80, 3.54] 3.11 0.11 1.01 760.48
σprior 0.12 [0.01, 0.11] 0.06 0.06 1.01 800.52

Table 4.2.: MCMC Results and Diagnostics for Synthetic Regimes – Results and MCMC diagnostics for
each parameter in every regime. The error shown is the absolute error.

only has little influence there. Since there is no variability in the term, there is also no uncertainty in the
estimation of the cost function there, since it will always be 1 no matter the value of α.
Even if some parameters cannot be reliably estimated, this evaluation showed us that the concept of our
method works and the posterior predictive checks show us that the observed data can be reliably captured
by the estimated parameters. Of course, it is always the goal to recover the exact parameters to be able to
attribute every component its respective role, but it shows us that there might be identifiability problems in
the estimation, since different sets of parameters can produce the same behavior. For more on that, please
consult Sections 2.4.1 and 5.1.1.
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4.1.3. Inference of Sensory Information

Until now and also for the most part of the following results we focus on the inference of the parameters.
However, we also infer the values of the subject’s measurements zi of the true targets ti. This makes the
inference a really hard problem, since the parameter space the inference must be performed over gets very
high-dimensional through that. We will take a closer look on this part of the inference in this section.
Again, we are using the four regimes introduced in the beginning of Section 4.1. Each of these data sets
consists of 8 targets with 25 trials each, thus the subject creates 200 measurements per data set in total. The
results of the inference are shown in Figure 4.3. Despite its catastrophic MCMC diagnostics and its improvable
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Figure 4.3.: Inference of Subject’s Measurements z – Means of the inferred posterior distributions of the
subject’s measurements zi over the ground truth for the following data sets: Hitting Target,
Undershoot via Cost, Undershoot via Prior and Regression to the Mean. The grey dashed lines
indicate optimal inference of each measurement.

inference results, the Hitting Target regime has the lowest MAE of 0.16. However, the MAE neglects the spread
of the data points around the optimum (dashed grey line in Figure 4.3). A much better measure for evaluating
this is the Pearson correlation coefficient ρ (Cohen et al., 2009) which measures the correlation between two
variables – here, the ground truth and the inferred values – and does not only average over the inference
errors. Whenever we refer to the correlation of two variables in the following, we mean the Pearson correlation
coefficient.
Investigating the correlation of the inferred values of each regime with the ground truth, the Hitting Target
regime and the Undershoot via Cost regime perform best with correlations of ρ = 0.98 each. Close in
performance is also the Undershoot via Prior regime with a correlation of ρ = 0.96. The Regression to the Mean
regime stands out here with a visibly bad correlation of only ρ = 0.75 between the inferred values of the
latent measurements zi and their ground truths.
We explain this difference primarily with the difference influence of the prior on the resulting behavior. Since
the Regression to the Mean regime is the regime where the prior has the most influence on the resulting
behavior and sensory information is almost neglected, the measurements are also not really considered in the
decision-making and are thus also difficult to infer. This trend is also observable in the other regimes, only
on a smaller scale: the higher the ratio between σp/σprior (in other words, the smaller the influence of the
sensory information), the higher the MAE of the measurement inference.
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4.1.4. Recovery of Parameters from Randomly Generated Data Sets

To get a measure of how well our methods performs on different sets, that is, different configurations of
parameters, we generated 100 data sets by randomly sampling parameter values and generating actions
using the numerical solver introduced in Section 3.2.2. Since we want to evaluate our approximate inference
method with the neural network here, we needed to use the numerical solver and not the neural network
for the data generation to obtain a more accurate solution. The data set simulates an experimental setup
with eight discrete target distances equidistantly in [1.2, 4.8] with 25 trials each, since we judge this to be a
realistic experimental setup for any experiment conducted in reality involving a perception-and-action task.
The parameter values are drawn randomly from the probability distributions shown in Table 3.2. We removed
three inference runs where the parameter estimates were more than ten times bigger than the real value,
since we judge these runs to have run into numerical problems during the MCMC sampling.
The posterior means of our inference method and the ground truth values are shown in Figure 4.4. The
parameter with the visibly best correlation between inferred value and true values is σa (ρ = 0.942). This
is followed by µprior (ρ = 0.747), σp (ρ = 0.635) and σprior (ρ = 0.566). The correlation gets worse for the
parameter β, which only has a correlation of ρ = 0.403. The parameter α shows almost no correlation with
the ground truth (ρ = 0.145), which is line with our previous findings that α is generally hard to infer, most
likely because it has not that much impact on the resulting behavior – which also makes it less severe if we
cannot infer it reliably.
However, this ranking in performance changes a little when we consider the MAE instead of the correlation.
Please keep in mind that the correlation also accounts for the variability while the MAE can average it out – we
also provide theMAE for completeness here but do not rely on it toomuch out of said reasons. We also computed
the relative errors of the inferred posterior means to the true values per parameter and run. The lowest inference
errors arise in the inference of the cost parameter β (Mean = 0.13, SD = 0.10), the prior parameter µprior
(Mean = 0.33, SD = 0.57) and the motor variability σa (Mean = 0.41, SD = 0.70). For the motor variability
and µprior, a lot of probability mass lies between the median and the 75%-quartile though, thus these are
more likely to be overestimated. The relative inference error is higher for α (Mean = 0.43, SD = 0.53), the
perceptual uncertainty σp (Mean = 0.68, SD = 1.02) and the prior uncertainty σprior (Mean = 0.74, SD = 1.03).
The upper bound of the observed errors is almost always farther away from the median than the lower bound
because of the nature of the relative error. Especially when considering the variabilities, we observe a lot of
very small values which can easily lead to high relative errors if an inferred estimate is a little off.
As another quantitative evaluation, we calculated the 95%-HDI for each inferred posterior and counted in
how many cases the 95%-HDI contained the true value of the respective parameter on the right of Figure
4.4. We also calculated the standard error of the mean (SE) for the number of times a HDI covered the true
value of a parameter. Based on this evaluation, the inference of the cost function parameters α (89.88% in
HDI, SE = 0.0321) and β (89.88% in HDI, SE = 0.0321) works quite well with inferred values within the HDI
in about 90% of the cases. For µprior (86.52% in HDI, SE = 0.0364), this is a little less, and the variabilities
σprior (80.90% in HDI, SE = 0.0419), σa (83.15% in HDI, SE = 0.0399) and σp (82.02% in HDI, SE = 0.0409)
are inferred correctly in about 80% of the cases.
Please note that it is very difficult for the MCMC sampler to infer values that have only little influence on
the observed actions. For example, in a parameter configuration that has a high ratio between σp and σprior
and thus leads to the prior having no influence on the subject’s behavior, it is often hard to infer the prior’s
parameters. This also makes inferring σprior and σp really difficult, since there potentially are identifiability
problems between the prior parameters µprior and σprior (cf. Section 5.1.1). Moreover, these synthetic data sets
were sampled randomly and besides the tuning of the sampling distributions do not have constraints to really
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Figure 4.4.: Inferred Posterior Means vs. Ground Truth in Random Synthetic Data – Means of the inferred
posteriors versus the ground truth value per model parameter. With optimal and exact inference,
all samples would fall on the grey dashed diagonal line denoting equality between the ground
truth and the inferred value. On the top right, the amount of samples in the 95%-HDI is shown
per parameter with the error bars denoting the standard error of the mean. The grey dashed line
denotes the best case scenario where the HDI always contains the true value. On the bottom
right, the relative absolute error as difference between ground truth and inferred mean is shown
for each parameter. Boxes show interquartile ranges with the medians denoted as a solid black
line. The whiskers of each box extend to the full range of each error distribution.

represent realistic data. Most likely, some parameter configurations do not generate realistic behavior, but
we still relied on this evaluation method in order to cover the majority of possible parameter configurations,
regardless of how likely they are to describe real behavioral data.

MCMC Statistics

For the most part, the diagnostics of our MCMC runs were good. That is, we have a good value of R̂ (a measure
for the convergence of chains) which should be close to 1.0 and sufficiently large effective sample sizes (ESS).
The statistics of the runs on the synthetically generated data set used in Section 4.1.4 are shown in Figure 4.5.
The median of R̂ for all parameters is at about 1.01 or 1.02, which indicates that the values of R̂ are mostly
close to 1.0. If one observes R̂ > 1.05, this is a sign that the chains of the respective run did not converge and
the posterior estimates are more likely to not be close to the ground truth. Since we have maximum R̂ values
that are even bigger than 2.0, not all of our MCMC runs converged. This makes sense regarding the results
from Section 4.1.4, where the HDI did not always cover the true values – most likely, the runs where the HDI
fails to contain the ground truth are also the ones where the chains did not converge.
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Parameter R̂

Median Min Max
α 1.01 1.00 2.13
β 1.01 1.00 1.82

µprior 1.01 1.00 2.40
σprior 1.01 1.00 2.04
σa 1.02 1.00 1.64
σp 1.02 1.00 2.18
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Figure 4.5.: MCMC Statistics – Statistics of the MCMC runs on the synthetic data set from Section 4.1.4.
The table on the left shows the statistics of R̂ over all 100 data sets per parameter, also depicted
in the center figure. The figure on the right shows the median values of the effective sample
sizes (ESS) over all runs per parameter.

Moreover, the effective samples sizes differ a lot for some parameters. The ESS is a measure for the independent
information gain per MCMC sample (Kruschke, 2015) and should be as high as possible. We only have a
median ESS of 1,000 to 1,500 in the bulk of the distribution and of about 1,500 to 2,500 in the tail of the
distribution for parameters α, β, µprior. This is not a lot, especially considering that our MCMC sampling ran
for 20,000 sampling steps. Still, it is sufficient to reliably obtain estimates close to the true values (Bürkner,
2017). In line with the the slightly worse results for the variabilities σprior, σa and σp in Section 4.1.4, the
effective samples sizes are especially low for these parameters. This is really concerning and we should aim to
improve these statistics to improve the overall performance and ultimately better the accuracy of our method.
Anyhow, we did this evaluation only on the randomly generated data set and the results may be way better on
a data set that is more carefully tuned towards representing realistic parameter values instead of random
parameter configurations.

4.1.5. Influence of the Number of Trials on the Results

The experimental setup substantially influences how well our inference method performs, since the setup
determines how many observations of real target-action-pairs and how they are spatially distributed. If our
setup only provides us with few observations, our method will perform worse or at least provide broader
posterior distributions and thus less confident estimates, and the estimation accuracy will increase with a
higher number of samples. On the other hand, since we introduce a latent variable representing a percept for
each target, the dimensionality of the inference problem increases linearly with the number of observations in
our data set. Thus, the inference problem gets harder with larger observation data sets which might impact
performance negatively. The inference results for data sets with eight equidistant targets in [1.2, 4.8] with
[10, 25, 50, 75, 100] trials each are shown in figure 4.6. For each number of trials we created 30 data sets.
We expected an increase in accuracy for an increasing amount of trials per target, since this also increases
the number of observations our inference method can use for its estimations. Usually, more data gives rise
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and exact inference, all values would be equal to 1.0 (grey dashed line). In the bottom row, the
portion of runs where the 95%-HDI covered the ground truth value is shown. Error bars indicate
the standard error. All inferences are based on 30 data sets per number of trials.

to higher accuracy. This is not the case here. The posterior HDIs do not shrink with an increasing amount
of trials and the variabilities σ are constantly overestimated, regardless of the number of trials. Only the
parameter β is reliably estimated. This trend is even more evident in the portion of inferred HDIs that cover
the true value of the respective parameter. With an increasing number of trials, less HDIs include the ground
truth parameter value.
We have no explanation for the systematic overestimation of the variabilities σ, but it could arise due to
numerical issues in the sampling process, since the values of the uncertainties are naturally rather small in
the modeling of human behavior. We explain the decrease in performance with the increasing hardness of
the inference problem with more observations. Although the accuracy of most inference methods increases
with more observations, the inference problem in our framework becomes higher-dimensional with more
observations. Since we treat the measurement zi of each target ti as own latent variable that needs to be
inferred and is not observable, each observation adds a dimension to the parameter space we need to perform
inference on. With the six cost function parameters (α, β), prior parameters (µprior, σprior) and uncertainties
(σa, σp) and an experimental setup consisting of 8 targets with 10 trials each, the inference space is 86-
dimensional. For 100 trials per target, this increases to a 806-dimensional inference space. This is an issue
that we need to address in future work to improve our method such that it scales well with observed data.
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4.2. Experimental Data

Since a benchmark on synthetic data can only serve as a proof of concept, we still need to validate whether our
method can successfully recover parameters from empirically gathered data and if it enables us to qualitatively
interpret and identify different patterns. To that end, we chose two data sets where the characteristic patterns
described in Section 2.1.5 can be observed. That is, a data set of a bean bag throwing task (Willey and Liu,
2018) and a data set of a puck sliding task (Neupärtl et al., 2020).

4.2.1. Bean Bag (BB) Data Set

In this section, we apply our method to a data set from a bean bag throwing task by Willey and Liu (2018).
20 participants were asked to throw a bean bag at five different target distance from 3 to 11 feet with 2 feet
increments (.9144 to 3.3528 meters). The participants solved the task in blocks of twelve trials each with
random ordering of the five blocks. The subjects did not receive any feedback, neither visually nor verbally.
The inferred parameters are shown here for four selected subjects in Table 4.3 and Figure 4.7 and in the
appendix in Figures A.8, A.9 for all subjects.
We selected the subjects which we will review here in more detail by qualitative differences in exhibited
behavior and the inferred parameters. Subjects 12 and 02 show undershoot behavior but with different cost
functions, subject 06 shows a regression-to-the-mean pattern and subject 17 hits the targets quite well over
the full stimulus range.
Subject 12 shows systematic undershoots with a small increase in the difference between the inferred median
of their actions and the real target values, which could be explained by signal-dependent noise – because the
variability of their actions increases with increasing stimulus intensities, they are more safe in avoiding high
costs for overshoots by rather aiming further below the real stimulus value.
The cost function inferred for subject 12 is clearly asymmetric, which comes about by the low value of β
(Mean = 0.59, SD = 0.10) which puts a lot of weight on penalizing the effort necessary for executing the
action. The true value of β might be even smaller than the inferred mean, if it coincides with the peak in the
inferred posterior for β. The overall form of the cost function is slightly super-quadratic given the value of α
(Mean = 2.40, SD = 0.62).
The prior distribution further amplifies the undershoots by putting a lot of probability mass on low stimulus
values with µprior = 1.47 (SD = 0.72) and σprior = 0.35 (SD = 0.10). However, the prior should not have too
much influence since the uncertainty in the prior is about double the value of the perceptual uncertainty σp
(Mean = 0.17, SD = 0.05). The spread of the subject’s actions per target is rather small in comparison to the
other subjects and this also shows in a small motor variability σa (Mean = 0.12, SD = 0.06).
While subject 02 also exhibits undershoot behavior, their cost function looks a bit different. The observed
behavior is about the same as for subject 12 but with a little stronger undershoots and increased spread of
actions, which directly shows in an increased value for the motor variability σa (Mean = 0.22, SD = 0.04).
In line with the undershoots, the inferred cost function is also asymmetric, but it is far less quadratic. The
value of α is nearly 1.0 (Mean = 1.16, SD = 0.67), thereby the cost almost scales with the absolute error
directly. The inferred posterior even shows a skew towards small values α < 1, thereby indicating that it
might also show behavior of a root function in reality.
The undershoots are again further supported by a prior with a lot of probability mass at low values. While the
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log-normal distribution is shifted a little towards the right this time with µprior = 1.57 (SD = 1.08), this is
cancelled out due to a bigger ratio between the perceptual uncertainty σp (Mean = 0.11, SD = 0.07) and the
prior uncertainty σprior (Mean = 0.31, SD = 0.17).
Subject 06 qualitatively differs in its behavior by showing regression-to-the-mean patterns, which usually
comes about by stronger reliance on the prior and less reliance on the sensory information. This also shows
in the inferred data, since the perceptual uncertainty σp (Mean = 0.19, SD = 0.07) is highest for subject 06
while their prior uncertainty σprior (Mean = 0.23, SD = 0.08) is the lowest of all subjects.
The inferred value of µprior (Mean = 2.85, SD = 0.54) puts most of its probability mass into [2.0, 4.0] and
makes the prior belief not match the stimulus distribution, which covers about the range [0.9, 3.4]. This might
be due to different reason. First of all, the subject could have really learnt a mismatched representation of
the stimulus distribution, but we think that this is most unlikely. It is rather a common phenomenon in our
method, that a strong effect of the prior is rather brought about by high values of µprior instead of a higher
ratio σprior/σp, which would capture the stronger reliance on the prior more appropriately. Moreover, it could
be due to technical reasons, since we did not adapt the stimulus range for our MCMC priors (cf. Table 3.2)
and thus the inference ran with the prior distributions for µprior conditioned on the stimulus range of [1.2, 4.8]
from our synthetic data. It is necessary to repeat this experiment with an adapted prior for µprior and see how
this changes the inferred value for µprior.
The cost function inferred for subject 06 shows no specialties, it is slightly asymmetrical because of the value
of β (Mean = 0.74, SD = 0.13) and its overall form is quasi-quadratic with α = 1.94 (SD = 0.82).
The variability in actions is lowest for this subject and it also shows in the motor variability σa (Mean =
0.10, SD = 0.05).
The last subject with ID 17 was able to hit the targets quite well on average. Usually, this comes about with
low reliance on the prior, small perceptual uncertainty and low emphasis on effort costs.
We can observe exactly this pattern in the values our method inferred for this subject. The prior is the widest of
all inferred priors with a variability of σprior = 0.40 (SD = 0.16). The value of µprior (Mean = 2.80, SD = 0.90)
is rather high but of no further importance since it has no real influence on the resulting behavior anyway.
Because of the small value of σp (Mean = 0.13, SD = 0.06) in contrast to the high value of σprior, this subject
relies a lot on its sensory information instead of the prior.
The cost function also resembles the low effort cost that is necessary to obtain good accuracy in the task
with β = 0.82 (SD = 0.10). This puts a lot of weight on the accuracy term of the cost function and less on
the effort term. The overall form of the cost function is between linear and quadratic due to the value of
parameter α (Mean = 1.63, SD = 0.66).
The motor variability for this subject lies in the middle of the field (Mean = 0.16, SD = 0.05).
In all inferred data sets showing undershoots (subjects 02 and 12) or a well-tuned response to the stimuli
(subject 17), the resulting behavior was explained with the cost function parameters, for example the
undershoots of subject 12 with β = 0.59 or the hits of subject 17 with β = 0.82. Strong reliance on the prior
led to regression to the mean behavior in subject 06 with the lowest uncertainty σprior = 0.23 in the prior of
all selected subjects.
Also, the prior was much lower for subjects 12 and 02 (µprior ∈ {1.47, 1.57}) in contrast to subjects 06 and 17
(µprior ∈ {2.85, 2.80}). This could be a problem in some cases though because it might not always clearly be
identifiable whether undershoots come about by low effort costs or high reliance on the prior. For example,
the value of β of subject 02 is not really low (as it usually is the case for undershoots via effort cost) and the
prior also has a lot of probability mass at low values. While it can surely be that the observed behavior comes
about by a mixture of effort cost and reliance on prior beliefs, we need to make sure that more extreme values
can also be reliably extracted, which would make the interpretation of the results also more easy and clear.
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Subject ID α β σa σp µprior σprior

12 (Undershoot) 2.40(±0.62) 0.59(±0.10) 0.12(±0.06) 0.17(±0.05) 1.47(±0.72) 0.35(±0.10)
02 (Undershoot) 1.16(±0.67) 0.72(±0.11) 0.22(±0.04) 0.11(±0.07) 1.57(±1.08) 0.31(±0.17)

06 (Reg. to Mean) 1.94(±0.82) 0.74(±0.13) 0.10(±0.05) 0.19(±0.07) 2.85(±0.54) 0.23(±0.08)
17 (Hit) 1.63(±0.66) 0.82(±0.10) 0.16(±0.05) 0.13(±0.06) 2.80(±0.90) 0.40(±0.16)

Table 4.3.: Exemplary Results from BB Data Set – Results of our methods applied to the BB data for selected
subjects that show different results and behaviors. Each estimated parameter’s posterior mean
is shown with the respective standard deviation of the inferred posterior in brackets. Subject 12
and 02 exhibit undershoots while subjects 06 and 17 show regression to the mean behavior and
hit the targets quite well, respectively. Results are visualized in Figure 4.7.

The ranges of inferred values over all 20 subjects are shown in Table 4.4. We inferred values of α in [1.04, 2.70],
thereby not finding any root functions as cost function which all behave at least linearly. The inferred value
range for β is [0.51, 0.86], thereby spanning a big range of how strongly effort costs are considered and avoiding
value β < 0.5 for which the model usually does not have a solution.
For the prior distributions, we inferred values of σprior in [0.15, 0.59], which seems reasonable. The values of
µprior lie within [1.02, 4.33], where the upper bound seems a little bit high considering that the stimuli range
is about [0.91, 3.35]. This could be due to the previously mentioned un-adjusted prior distribution for µprior,
which is still set on stimuli in the range of [1.2, 4.8] as it was the case in the synthetic data.
The inferred values for σa are in [0.05, 0.24] and for σp are in [0.07, 0.24], which also seem reasonable.

Parameter Inferred Value
Min Median Max

α 1.038 1.631 2.669
β 0.505 0.741 0.855

µprior 1.018 2.440 4.334
σprior 0.153 0.326 0.594
σa 0.051 0.134 0.236
σp 0.070 0.135 0.237

Table 4.4.: Range of Inferred Values for Data Set BB – The minimum and maximum value along with the
median value over the range of all inferred values per parameter.

MCMC Diagnostics

It is also worth taking a look at the MCMC diagnostics of the inferences performed on the empirical data of all
20 subjects. The values of R̂ and the effective sample sizes are shown in Figure 4.8. It is remarkable that
the MCMC diagnostics look much better on real data than on the synthetic data set in Section 4.1.4. Here,
we have R̂median < 1.025 in the median for all parameters over all runs. The maximum values of R̂ also do
not exceed 1.18 at most for σa. Given that, we can assume that the chains for all inference processes on the
empirical data converged.
However, the effective sample sizes still are really low. The effective sample sizes are highest for parameters
α and µprior with median values of 2, 096.0 and 2, 660.5 in the bulk, respectively. We are primarily looking
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Parameter R̂

Median Min Max
α 1.005 1.00 1.12
β 1.010 1.00 1.11

µprior 1.010 1.00 1.08
σprior 1.010 1.00 1.15
σa 1.025 1.00 1.18
σp 1.010 1.00 1.09
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Figure 4.8.: MCMC Statistics for the BB Data Set – Statistics of the MCMC runs on the synthetic data set
from Section 4.1.4. The table on the left shows the statistics of R̂ over all 20 participants in the
BB data set, also depicted in the center figure. The figure on the right shows the median values
of the effective sample sizes (ESS) over all runs per parameter.

at the bulk ESS in the following since this value is of most importance to us and it is commonly used when
investigating the ESS. The values for α and µprior are still acceptable.
We then observe a much smaller ESS for β and σprior with values of 1, 075.5 and 1, 065.0, respectively. This is
a little low, but can still be accepted, since at least 1, 000 are necessary to obtain stable estimates (Bürkner,
2017).
However, for the perceptual uncertainty and motor variability we drop below 1, 000 effective samples, which
is definitely too low. The motor variability σa has a median ESS of 151.5 and the perceptual uncertainty
σp shows a median ESS of 564.0. According to Bürkner (2017), these values are too low to perform stable
inference over these parameters. Yet, we obtain reliable parameter estimations for most runs. We definitely
need to look into this by examining to which extent the ESS is limited by the inference process and by our
model itself, in order to increase the effective sample sizes, especially for σa and σp, in future versions.
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4.2.2. Puck (PU) Data Set

In this continuous visuomotor task by Neupärtl et al. (2020), 16 participants were asked to propel a puck
towards a target in a virtual environment with simulated friction on the surface the pucks were slid on. The
initial force and thus also initial acceleration applied to the puck was determined by how long the subjects
held down a button in each trial. Initial positions of the puck and positions of the targets were randomly
drawn to virtually cover a distance between 1.0 and 5.0 meters. Here, we only analyze the data of the second
of four different phases. The subjects were familiar with the task after finishing the first phase without any
visual feedback. In the second phase, they then received visual feedback on where the thrown pucks landed.
All subjects solved the task with two different conditions (‘D’ and ‘F’) in which they were given pucks with
different masses, thus influencing the friction with which the pucks slid over the surface. Each subject solved
200 trials.
The inferred parameters are shown here for selected subjects in Table 4.5 and Figure 4.9 and in the appendix
in Figures A.10, A.11 for all subjects.
Again, as for the results for data set BB, we selected four subjects which either differ in their qualitative
behavior or the inferred parameter values, to showcase the overall behavior of our method on data set PU.
Subjects KA01NS and OK18ER show undershoot behavior, while subject KA06IN shows a regression-to-the-
mean pattern in their actions. Subject KA09NG also exhibits undershoots, but this only applies to the upper
half of the stimulus range. They hit the targets well on average for the lower half of the stimulus range.
Subject KA01NS with the ‘D’-condition puck exhibits undershoots which most likely come about through the
asymmetric cost function given by the inferred values of the parameters α (Mean = 2.33, SD = 0.82) and β

(Mean = 0.74, SD = 0.15), the latter of which is primarily responsible for the undershoots.
The inferred prior distribution lies approximately in the middle of the stimulus range. The inferred parameters
are µprior = 3.43 (SD = 1.21) and σprior = 0.18 (SD = 0.09) but the inferred shape of the prior distribution
is not really certain, as the 95%-HDI of the inferred prior covers the whole stimulus range approximately
uniformly.
The inferred motor variability σa (Mean = 0.42, SD = 0.03) is rather high in contrast to the values inferred
in the BB data set. The perceptual uncertainty σp (Mean = 0.04, SD = 0.05) is much lower than the prior
uncertainty σprior, which reduces the influence of the prior on the produced behavior.
The subject OK18ER with the ‘D’-condition puck also produces undershoots but with less variability in its
actions and the undershoots are a little stronger than for subject KA01NS.
The cost function inferred for subject OK18ER is strongly asymmetric and puts a lot of weight on the effort cost
via parameter β (Mean = 0.50, SD = 0.11). The overall shape of the form is super-quadratic with α = 2.61
(SD = 0.57).
Besides the high influence of the effort cost, the undershoots are further supported by a prior with a lot of
probability mass at the lower end of the stimulus range. The prior of the subject is parameterized by µprior =
2.10 (SD = 0.65) and σprior = 0.44 (SD = 0.11). The influence of the prior is of moderate strength because
of its high uncertainty. Although the perceptual uncertainty σp is also rather high (Mean = 0.30, SD = 0.09),
the ratio between σprior and σp is at about 1.5, which usually does not lead to strong influences of the prior.
The motor variability σa of subject OK18ER is the lowest of the four subjects featured here (Mean = 0.22, SD =
0.09).
We can also observe regression-to-the-mean behavior in the PU data set, for instance in subject KA06IN with
the ‘F’-condition puck. Regression to the mean usually comes about through strong reliance on the prior,
which can also be observed here.

71



1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5
Inferred Cost Function

95% HDI
mean
target

KA
01

NS
 (D

)

1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

OK
18

ER
 (D

)

1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

KA
06

IN
 (F

)

1 2 3 4
action a

0.0

0.5

1.0

1.5

2.0

2.5

KA
09

NG
 (F

)

2 4
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Inferred Prior

2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4
target t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2 4
0
1
2
3
4
5
6
7
8

ac
tio

n 
a

Posterior Predictive Check
mean
95% HDI
action

2 4
0

1

2

3

4

5

6

7

8

ac
tio

n 
a

2 4
0

1

2

3

4

5

6

7

8

ac
tio

n 
a

2 4
target t

0
1
2
3
4
5
6
7
8

ac
tio

n 
a

2 4 0.50 0.75

2 4

prior

0.1 0.2 0.3

prior

0.40 0.45

a

0.0 0.1

p

Inferred Posteriors

2 3 0.50 0.75

1 2 3

prior

0.25 0.50

prior

0.25 0.50

a

0.00 0.25

p

1 2 0.8 1.0

4.254.504.75

prior

0.1 0.2

prior

0.35 0.40 0.45

a

0.1 0.2

p

1 2 0.9 1.0

3 4

prior

0.1 0.2

prior

0.40 0.45

a

0.0 0.1

p

Figure 4.9.: Exemplary Results from PU Data Set – Inferred cost functions and priors with posterior predictive
checks and inferred posterior parameters on data set PU. Color legend –True values: red; Inferred
means: black; 95%-HDI: grey; targets: dashed grey lines; actions: orange. Black dots at the
x-axes denote posterior means. Inferred values listed in Table 4.5.
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Subject ID α β σa σp µprior σprior

KA01NS (D) 2.33(±0.82) 0.74(±0.15) 0.42(±0.03) 0.04(±0.05) 3.43(±1.21) 0.18(±0.09)
OK18ER (D) 2.61(±0.57) 0.50(±0.11) 0.22(±0.09) 0.30(±0.09) 2.10(±0.65) 0.44(±0.11)
KA06IN (F) 1.68(±0.57) 0.89(±0.08) 0.40(±0.03) 0.11(±0.05) 4.53(±0.22) 0.11(±0.06)
KA09NG (F) 1.24(±0.41) 0.94(±0.04) 0.44(±0.02) 0.04(±0.04) 3.92(±0.78) 0.14(±0.07)

Table 4.5.: Exemplary Results from PU Data Set – Results of our methods applied to the PU data for selected
subjects that show different results and behaviors. Each estimated parameter’s posterior mean
is shown with the respective standard deviation of the inferred posterior in brackets. Subjects
KA01NS and OK18ER show undershoot behavior, while subject KA06IN shows a regression-to-the-
mean pattern. Subject KA09NG also shows undershoots but hits the targets well on average for
the lower half of the stimulus range. Results are visualized in Figure 4.9.

The prior distribution of subject KA06IN has a really high value for µprior (Mean = 4.53, SD = 0.22) which
can strongly increase the value of the produced action if the prior has enough influence. The variability
σprior of the prior is also rather small (Mean = 0.11, SD = 0.06) and equal to the perceptual uncertainty σp
(Mean = 0.11, SD = 0.05), thereby exhibiting a strong influence on the final response which leads to the
observed regression to the mean.
The cost function is parameterized by α = 1.68 (SD = 0.57) and β = 0.89 (SD = 0.08), thereby putting
strong emphasis on the accuracy term of the cost function. However, this is not of so much importance here
since the behavior is primarily shaped by the prior anyway.
The motor variability of the action is, again, rather high with a value of σa = 0.40 (SD = 0.03).
Subject KA09NG with the ‘F’-condition puck also shows undershoot behavior but with a little different values
for the cost function parameters.
The inferred value for α = 1.24 (SD = 0.41) is one of the lowest observed in the whole data set and the
inferred value for β = 0.94 (SD = 0.04) is one of the highest values in the whole data set for the respective
parameter. This leads to a cost function which behaves close to linear to the error and is very symmetric since
it does not put a lot of weight on the effort term.
The inferred prior is primarily located towards the upper end of the stimulus range because of µprior (Mean =
3.92, SD = 0.78) but only has minor influence on the resulting behavior because of the ratio between σprior
(Mean = 0.14, SD = 0.07) and σp (Mean = 0.04, SD = 0.04).
The inferred motor variability is typically high for this data set with σa = 0.44 (SD = 0.02).
Subject KA09NG probably hits the targets well at the lower end of the stimulus range because the prior
increases the intensity of weak actions more strongly. Yet, since the parameters are not that clear here, it
could also come about by the random distribution of actions for smaller stimuli, which could easily be the case
because of the higher motor variability in this task overall.
In this data set, the undershoots for subjects KA01NS and OK18ER could be explained by low values for the
parameter β ∈ {0.74, 0.50}. The regression-to-the-mean behavior by subject KA06IN comes about by strong
reliance on a high prior with µprior = 4.53 and σprior = σp = 0.11. The accurate performance in low stimulus
ranges and undershoots for higher stimuli shown by subject KA09NG cannot be explained clearly, but the
good performance corresponds to high weight on the parameter β = 0.94. The overall behavior could also be
a little unclear because of the generally high motor variability in this task, with σa = 0.44 for subject KA09NG.
The ranges of inferred values over all 16 subjects with both puck conditions are shown in Table 4.6 and we
will compare the inferred values here with the bean bag task (BB).
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The parameter α was inferred in the range [1.19, 3.51] and thereby has a much higher maximum value than in
the BB task while the median (αmedian = 0.861) is about the same. For parameter β ∈ [0.50, 0.96], there is an
extended upper bound as well. However, the median (βmedian = 0.861) of the values of beta is also increased
in contrast to the values inferred in the BB task.
The inferred values for the prior distribution’s parameter µprior are much higher than in the BB task with values
in [1.54, 4.66]. This is only a logical sequence of the increased stimulus range with higher values in the PU task.
The variability of the prior lies in [0.07, 0.52], where the minimum value and the median (σmedian

prior = 0.152)
are only half of the values in the BB task. This would usually suggest that there is a stronger reliance on the
prior in this task overall, yet the values for σp behave similarly.
The values inferred for σp lie in [0.01, 0.30] with the median (σmedian

p = 0.053) being less than half the value
of the median in the BB task. The motor variability is generally higher in the PU task with σa ∈ [0.22, 0.67],
which can make the inference problem a little harder because it may require more observation to make reliable
inferences about the underlying behavior.

Parameter Inferred Value
Min Median Max

α 1.194 1.682 3.514
β 0.495 0.861 0.955

µprior 1.544 3.466 4.656
σprior 0.067 0.152 0.517
σa 0.223 0.358 0.665
σp 0.010 0.053 0.301

Table 4.6.: Range of Inferred Values for Data Set
PU – The minimum and maximum value
along with the median value over the
range of all inferred values per parame-
ter.

Parameter Inferred Means
Diamond (D) Five Dots (F)

α 1.884 1.850
β 0.798 0.845

µprior 2.974 3.867
σprior 0.197 0.190
σa 0.357 0.394
σp 0.078 0.086

Table 4.7.: Inferred Means for different Pucks –
Differences in inferred parameters for
the two different puck conditions ‘D’=Dia-
mond and ‘F’=Five Dots.

As a small example how our method can also be used, we did a brief comparison of the inferred posterior
means per parameter for the different puck conditions D and F. The pucks differed in their weight, with the
D-pucks being 25% heavier than the F-pucks. We only compare the mean of the inferred means over all
subjects in each condition in Table 4.7. While this is neglectful of the variance of each parameter and does
not take into consideration, for instance, whether one puck produced data for which the parameter set was
generally more difficult to infer, it still shows some differences between the two conditions.
The values for parameter α are about the same in both conditions. For parameter β, the values is slightly
higher in the F-condition, which puts less emphasis on the effort in the F-condition. This makes sense, since
the F-pucks are lighter than the D-pucks and thereby the subjects need to put less effort into them to hit the
same targets. There are no other remarkable differences between the parameters across the two conditions,
except for the location of the prior distribution µprior, which is much higher for the F-pucks. There could either
really be a shift in the prior distribution from one condition to the other, or farther sliding pucks because of
the lower weight are wrongfully attributed to the subject’s prior beliefs by our method. This could have a lot
of reasons and would need more thorough investigation for which we do not have the room here, since we
only want to showcase an example for analysis with our method here.
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MCMC Diagnostics

It is also worth taking a look at the MCMC diagnostics of the inferences performed on the empirical data of all
32 inference runs. The values of R̂ and the effective sample sizes are shown in Figure 4.10.
The MCMC diagnostics in the PU data set are worse than in the BB data set. While the values of R̂ were
almost perfect in the BB data set, we have a lot more outliers in the PU data set. While the median of all
values of R̂ is below 1.035 for all parameters, there are also some runs with values R̂ > 1.1, which is a sign
of bad convergence. This impression is also confirmed when looking at the traces of the runs. For example
Figure A.12 in the appendix shows a bimodal distribution for subject OK18ER in condition F. In this case,
some chains converged to one parameter configuration and some chains converged to another. This is one of
the identifiability problems introduced in Section 2.4.1 and will be discussed in more detail in Section 5.1.1.
Besides bimodal posterior distributions, the chains generally did not converge to exactly he same shapes for
various runs in the inference on the PU data set, which probably causes the bad R̂ values.

Parameter R̂

Median Min Max
α 1.005 1.00 1.42
β 1.010 1.00 1.62

µprior 1.010 1.00 1.25
σprior 1.020 1.00 1.57
σa 1.000 1.00 1.60
σp 1.035 1.00 1.61
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Figure 4.10.: MCMC Statistics for the PU Data Set – Statistics of the MCMC runs on the synthetic data set
from Section 4.1.4. The table on the left shows the statistics of R̂ over all 16 participants and 2
conditions in the PU data set, also depicted in the center figure. The figure on the right shows
the median values of the effective sample sizes (ESS) over all runs per parameter.

The effective samples size behaves the same way as in the BB data set and in our synthetically generated
data, except for the ESS of σa. The effective sample size for σa is huge for some runs. We needed to clip
the value to the number of maximum samples per inference run, which is nsamples = 20, 000. The effective
sample size can exceed the number of actual samples if the samples drawn during the MCMC inference are
anti-correlated. For visual reasons and for comparison with the other ESS values, we clipped the value at
20, 000. The only explanation we have for the much better ESS for σa is the increased action variability in the
PU task, through which the more widespread action observations could provide the sampling process with
more useful information.
For the other parameters, we get the same results as every time before when examining the effective sample
size. For parameters α, β and µprior, the ESS is sufficient. However for the variabilities σprior, σa and σp, the
ESS decreases below 1, 000 samples and thus indicates unstable estimates. Since this happened on all data
sets, the problem seems to be model specific and invariant to the data we are performing inference on.
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5. Discussion

We developed a new framework extending approximate inference to (re-)production tasks with continuous
action spaces in complex Bayesian actor models. Inference over existing models was usually difficult because
of analytical intractability of the models. This limited existing models to use quadratic cost functions and
Gaussian probability distributions. By using a pre-trained neural network, we provide a method of obtaining
numerical solutions to these intractable models, which is fast enough to be used in sampling-based inference
methods.
With our framework, researchers from the domain of perception and action can explore the degrees of freedom
in modeling human behavior with arbitrary cost function and probability distributions. The general perception
and action generation stage can be exchanged completely and the decision-making stage can be adjusted to
one’s liking as long as the key components like the cost function and decision-making through optimization
remain in place.
Using our model, researchers have a new tool to investigate learning. By applying our method to pre-test
and post-test data, gathered before and after a training session, one can find the influence of certain kinds of
training on the prior beliefs, cost function, perceptual uncertainty and motor variability of the subjects. In
addition to these intra-individual differences, we can also examine inter-individual differences by comparing
the inferred parameters for different subjects. Or, for instance, the influence of external circumstances on the
subjects’ parameters can be measured, like we superficially demonstrated with the different puck conditions
in the PU data set (cf. Section 4.2.2).
Still, there are some limitations which we discuss in Section 5.1. A common problem in inference over
Bayesian actor models incorporating prior beliefs and cost functions is the identifiability problem which arises
because different parameter configurations can result in the same behavior, making it hard to discern which
of the estimated parameter configuration corresponds to the real parameter values. This problem was already
introduced in Section 2.4.1 and is discussed with regard to our method in Section 5.1.1. Section 5.2 goes
a little beyond the scope of this work by elaborating on the theoretical assumptions and implications our
framework entails. This chapter closes with a short outlook on future work in Section 5.3.
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5.1. Constraints and Limitations

One of the most concerning problems of our method is the fact that MCMC chains are regularly getting stuck
in their initial states. Usually, we ran eight chains per data set and one to two chains were stuck at most. As
described in Section 3.4.3, we filtered all chains that were stuck throughout the whole inference process and
only used unstuck chains for the inference of the posterior distributions. Still, it is highly desirable that this
does not happen at all. We also tried different initialization methods, e.g. not initializing chains by drawing
the initial states from the prior (as we did in all results presented in Section 4) but also initializing with the
median of a small number of samples from the prior or initializing uniformly in a symmetric interval around
zero in the unconstrained parameter space as recommended by the inventors of NUTS themselves (Hoffman
et al., 2014). Usually, chains getting stuck can be a sign of a ill-defined probabilistic model. Despite several
checks, we could not find any flaws of that kind in our implementation though. Still, further work should be
put into it to ensure a correct formalization and implementation of the probabilistic model.
Furthermore, we observed insufficiently small effective small sizes for the variabilities σprior, σa and σp. This
is most likely a problem with the model or the inference process, since it happened for all data sets – synthetic
and empirical data alike. We need to find how this comes about and how to mitigate this.
Moreover, we observed a decrease in performance for bigger sets of observations in our synthetic data sets.
This is not too problematic, since researchers need to collect the data experimentally and thus usually do not
have too many data points at hand for each subject anyway.
Nevertheless, more data usually can be used for more accuracy. We should strive for the same behavior of our
method and make sure it scales well with more data. The decrease in performance probably comes about by a
bigger and harder inference problem when more observations of targets ti and actions ai are added, since we
need to infer one more latent sensory variable zi for each new target-action-pair. Perhaps this could be done
by hierarchically modeling or inferring the measurements zi in some way. However, we have no vision of how
this could exactly look like, since we also need to preserve single measurements zi per target-action-pair (ti,
ai) and pass them into our neural network and thus through the whole model independent from each other.
While our implementation allows for arbitrary cost functions and distributions other than normal distributions,
there are still some limitations on the distributions. Since no parameters in the model depend on the action
distributions but its only purpose is the generation of action according to some arbitrary distribution form, the
form of the action distribution can be chosen freely. We chose a log-normal for the action distribution since it
naturally implements signal-dependent noise but also any other distribution could be used. Yet, there is a
constraint on the form of the prior distribution in the perception stage of the model where the subject performs
inference over the true state of their environment. The likelihood used in the subject’s inference problem must
be log-normal based on one of our core assumptions that perception obeys the Weber-Fechner law (cf. Section
2.1.1). For computational convenience, we chose the prior distribution representing the subject’s belief about
the experimental statistics (i.e. the distribution of the stimuli and targets ti) to also be a log-normal distribution
since it is a conjugate prior to the log-normal likelihood, also resulting in a log-normal posterior distribution
with closed-form solutions for the posterior parameters. A log-normal distribution may not be an appropriate
choice for the subject’s prior belief though. For now, our method is yet limited to priors that are conjugate to a
log-normal likelihood. This limitation could be overcome by using Variational Inference (Blei et al., 2017) for
approximating the perceptual posterior in the subject to allow for arbitrary prior distributions in combination
with the log-normal likelihood. This was already used in Bayesian Decision-Making by Kuśmierczyk et al.
(2019).
In Section 3.2.1 we introduced different functional forms of cost functions that could represent the costs in
human decision-making quite well. Yet, we only used version Gen2B in the evaluation of our method. We
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want to emphasize here that our framework is not limited to this kind of cost function. Still, since we did not
evaluate our method with different cost functions against each other, there might be better choices in the
design of the cost function. This should definitely be done in the future to confirm or falsify theories about
which functions describe different human costs best.
Moreover, despite its prevalence in control theory and optimal control, our model does not contain any
feedback loops but is feed-forward only. A core property of feedback loops is that the difference between
target action and actual action is fed back into the system to allow for more accurate regulation of the action.
It can be fundamentally debated whether models motivated from control theory, Bayesian models with only
feed-forward action generation, a mixture of both or a completely different concept describes human behavior
best. Still, it is obvious that people probably incorporate some kind of feedback into their decision-making
which we do not model at all. When people utilize feedback on their actions – be it extrinsic from a researcher
supervising an experiment or intrinsic because they see for themselves how they missed the target –, this
probably results in a per-trial adaptation of the internal model and its parameters. For example, Izawa et al.
(2008) propose that humans learn a forward-model describing the sensorimotor consequences of their actions
and thus also try to learn an optimal controller. Cohen et al. (2010) also showed that with more practice, the
influence of the visual uncertainty got less. Since the visual uncertainty is determined by the properties of
the visual system which does not change short-term, this could be modeled with higher reliance on the prior
beliefs instead of the sensory uncertainty - that is, the prior uncertainty becomes much less than the sensory
uncertainty over time. This is further supported by Petzschner and Glasauer (2011), who obtained accurate
results with a model incorporating adaptive priors usign a Kalman-Filter. By learning good prior beliefs about
the experimental statistics during the course of the experiment, the prior uncertainty gets less and thus the
sensory information loses value.
Our method assumes that the behavioral parameters we want to infer are constant over all trials and the
respective action observations. This can only hold true if subjects were sufficiently trained on the task and we
can assume that any adaptations to the task and their overall behavior converged to an equilibrium state where
they perform qualitatively equal in every trial. We could only investigate the development of the behavioral
parameters by applying our method block-wise (e.g. the blocks in which the trials were presented to the
subject). Still, this probably reduces the accuracy of our method because we have less observations to use in
the inference (cf. Section 4.6) and still only models these changes on block-level instead of trial-level, which is
probably more realistic.

5.1.1. Identifiability Problems

We already introduced identifiability problems in Section 2.4.1. Usually, these problems arise in models with
quadratic cost functions and Gaussian distributions, since the linearity of the Gaussians interacts with the
quadratic cost function in a way that multiple prior-cost-metamers emerge that can all describe the same
behavior equally well (cf. Figure 2.3, Acerbi et al. (2014)). This usually shows in the form of multimodal
posterior distributions over the model parameters or through sampling difficulties due to perfect correlations
between two model parameters. We already encountered bimodal posterior distributions when we applied
our method to the puck data set (cf. Figure A.12).
The results of our work indicate that there could be some form of identifiability problem in our model but not
necessarily concerning the prior-cost-metamers introduced by Acerbi et al. (2014). For example, consider the
results from the Undershoot via Beta regime in Section 4.1.2 or, the Regression to the Mean regime (cf. Section
2.1.5) in general, which can be described by a too strong reliance on the prior representing the distribution of
the target stimuli. The mean of the distribution should correspond to the mean of the stimulus distribution
and the variability of the prior should become less the more the subject relies on it. Yet, how strongly the
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Figure 5.1.: Modified Probabilistic Model – Instead of inferring the prior uncertainty σprior directly, we infer σp
and the new parameter τ .

resulting action is shifted from the sensory information towards the prior can be influenced by two factors:
(1) the variability σprior in the prior decreases with respect to the sensory uncertainty σp and thus the subject
relies on the prior more heavily. Or (2) the variability in the prior remains constant but the parameter µ of
the log-normal logN (µ, σ) increases. Thereby, the resulting action is shifted more strongly towards the priors
even though the ratio of uncertainty in the prior and in the likelihood stays the same. Overall, since all the
parameters in our model seem to interact in complex ways, any change in the resulting behavior can probably
be brought about by many different changes in the parameter configuration. We cannot completely rule out,
that we occasionally infer parameter values that describe the observed data well but do not correspond to the
ground truth, but the evaluation on synthetic data suggests that our model works reliably well in that matter.
Also, some of these identification problems could eventually be solved by reparameterizing the probabilistic
model and changing the variables we infer. For example, we assume that there is a potential identifiability
problem between the parameters σprior and σp. Since the ratio of these two variabilities defines the influence
of the prior versus the influence of the sensory information and the same ratio can be created with arbitrary
values for σp and σprior, the pair of these parameters is not uniquely determined.
We could potentially resolve this issue by introducing a new variable τ = σprior/σp and modifying our
probabilistic model as shown in figure 5.1. We do not infer σp and σprior directly but instead try to infer the
correct value for σp and the new parameter τ , from which the value of σprior can then be calculated. However,
it needs to be tested extensively whether this really improves performance and in which cases it makes the
inference more or less accurate.
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5.2. Theoretical Grounding of the Framework

Besides providing another option for modeling human behavior in continuous perception-and-action tasks,
our framework could contribute to the debate how well suited Bayesian approaches are for describing human
behavior overall (cf. Griffiths et al. (2008); Bowers and Davis (2012); Griffiths et al. (2012); Tauber et al.
(2017)). Please note that all implications of our work are only valid on the functional / computational level,
as in why certain behavior emerges (cf. Marr’s three levels of analysis, Marr (2010)). Our model does not
imply anything for the algorithmic and implementational levels of human behavior, e.g. how certain behavior
emerges in the brain. If our work continues to deliver good results, also when applied to many other sets
of empirical data, and allows for good interpretation of the inferred parameters, our framework delivers a
strong argument that at least human perception indeed is statistically optimal, as for example assumed and
investigated by Körding and Wolpert (2004a), Knill and Pouget (2004) and Drugowitsch et al. (2016). We
can falsify or support normative Bayesian models only for the perception stage since it is the only component
on which we impose Bayesian assumptions on.
Generally, we take on an agnostic position on normative claims whether Bayesian methods really are imple-
mented in the brain. Nevertheless, we see strong value in Bayesian methods as descriptive means from the
researcher’s perspective (cf. Section 2.2.1). While MCMC Sampling methods are also a Bayesian method, they
are a purely descriptive tool for obtaining estimates of the parameters in our model and do not impose any
normative assumptions on how human perception and action works.
However, we also use Bayesian modeling from the subject’s view in the perceptual component, which we
modeled as Bayesian inference over the true state of the world, since it is a common view in modern perception
research (cf. Section 2.1.2). Nonetheless, this component could also be substituted with any other mechanism
that yields a percept of the true world state for the subject – be it Bayesian or not – without interfering with
our framework’s assumptions or concepts.
While there is empirical evidence from neuroscience that brains have the ability to encode probability dis-
tributions (Hsu et al., 2005; Beck et al., 2008; Fiser et al., 2010) and utilities or costs (Schultz et al., 1997;
Knutson and Peterson, 2005; Rudebeck et al., 2006; Walton et al., 2006; Prévost et al., 2010; Hosokawa et al.,
2013), we do not take any position regarding the real mechanism in the human brain. There may or may
not be an explicit neural representation of cost functions. For us, these cost functions are solely a tool for
interpreting and explaining human behavior quantitatively in the form of abstract parameters. The same
applies to the measurements zi of the true stimuli ti, the subject is provided with by its sensory system. It is
possible that there are scalar values encoded in the human brain somehow or that these measurements do not
take on a scalar form but are encoded as a probability distribution in the brain. These are important questions
but we leave it to neuroscience to answer them.
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5.3. Future Work

First of all, future work regarding our framework should focus on finding a way to avoid the MCMC chains
getting stuck in their initial states to have posterior estimates build from all run chains and not only a subset
of them. Furthermore, it shows that our probabilistic model is correctly specified.
Also, our method should be applied to more empirical data sets to identify strengths and especially weaknesses
in our method. The two experimentally collected data sets we used for our evaluation were quite similar
because they both involved subjects moving an object (bean bag or puck) to a certain distance that is visually
perceived. It would be interesting to apply our method also to different kinds of data, where the stimulus are
perceived through a different modality, for instance the auditory system, and action are of a different kind,
for example by holding down a button for a certain duration instead of accelerating one object with a quick
movement. We need to know under which circumstances it fails to perform well or how experiments should
be designed to guarantee that our method can be applied to the observed data successfully.
Additionally, our method should again be evaluated with different cost functions to find a functional form that
describes human behavior best, for example with the IG2B-form introduced in Section 3.2.1. Besides, while
the log-normal distribution for the likelihood and action distribution are well grounded in the Weber-Fechner
law and signal-dependent noise, respectively, it makes sense to enable an extension of the prior distribution to
other distributions than a log-normal. We have no reason to assume a log-normal form of the prior distribution
other than that it is conjugate to the log-normal likelihood. In order to do so, one could use variational
inference methods to approximate the posterior for non-conjugate priors. Also, we do not incorporate any
learning processes in our model yet. This could be extended with sequential Monte Carlo methods (Cappe
et al., 2007) over trials or with approaches similar to estimating the prior parameters in each trial with a
Kalman-Filter as done by Petzschner and Glasauer (2011).
Another possible extension of our model towards more general perception-action-models is the integration of
multimodal perception. While we currently only rely on one modality – mostly vision because it is one of the
most dominant senses –, it makes sense to extend the perception stage to receive sensory input in the form
of, e.g., auditory or haptic information. This can be easily done in our framework, for example the resulting
inference process of the subject for the true state of the world could work with a percept from vision and
audio. The resulting posterior belief about the true state of the world can then be based on a cue-combination
model (Ernst and Bülthoff, 2004; Fetsch et al., 2012). Just as the neural network is now trained on the joint
process of world state inference and optimization over the action distribution’s parameters, it would then be
trained with the cue-combination model for inference of the world state.
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6. Conclusion

We introduce a new model for human behavior in (re-)production tasks. Usually, Bayesian actor models in
continuous action and stimulus space are constrained to loss functions of certain forms (e.g. quadratic) and
distributions of certain forms (e.g. Gaussian) to preserve analytical tractability. We free researchers from
these constraints by making previously intractable Bayesian actor models in continuous space solvable with
little computational demand by approximating optimization and inference processes within the subject using
a neural network. This makes sampling-based inference methods feasible to be used on our model, which
was previously not possible due to the computational demand of numerically solving a model that has no
analytical solution. Thus, we can infer parameters describing behavioral costs, perceptual uncertainty, motor
variability and prior beliefs of the subject solving the task. We show that our method can reliably extract
parameters on synthetic data sets as well as on empirically collected data sets. Still, our method should be
tested and evaluated on various other data sets of empirical data to identify the conditions under which it
performs better or worse.
Moreover, there is potential in optimizing the probabilistic model and the inference process, e.g. to avoid
MCMC chains getting stuck and improve MCMC diagnostics. Because of the generality of our approach, it can
be easily extended to, for instance, account for learning effects or incorporate multimodal perception.
We allow researchers to model and analyze behavioral data from continuous decision-making tasks with more
degrees of freedom and enable them to test more complex theories in the perception, planning and action
stages that constitute human behavior.

82



References

Acerbi, L., Ma, W. J., and Vijayakumar, S. (2014). A Framework for Testing Identifiability of Bayesian Models
of Perception. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.

Adams, W. J. (2008). Frames of reference for the light-from-above prior in visual search and shape judgements.
Cognition, 107(1):137–150.

Ashby, F. G. and Maddox, W. T. (2005). Human Category Learning. Annual Review of Psychology,
56(1):149–178.

Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Pan Macmillan.
Barthelmé, S. and Mamassian, P. (2009). Evaluation of Objective Uncertainty in the Visual System. PLoS
Computational Biology, 5(9):e1000504.

Battaglia, P. W., Kersten, D., and Schrater, P. R. (2011). How Haptic Size Sensations Improve Distance
Perception. PLoS Computational Biology, 7(6):e1002080.

Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes,
F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions of
the Royal Society of London, 53:370–418.

Beck, J., Ma, W., Pitkow, X., Latham, P., and Pouget, A. (2012). Not Noisy, Just Wrong: The Role of Suboptimal
Inference in Behavioral Variability. Neuron, 74(1):30–39.

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N., Latham, P. E., and
Pouget, A. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6):1142–1152.
Publisher: Elsevier.

Becker, W. and Fuchs, A. (1969). Further properties of the human saccadic system: Eye movements and
correction saccades with and without visual fixation points. Vision Research, 9(10):1247–1258.

Bergmann, J., Krauß, E., Münch, A., Jungmann, R., Oberfeld, D., and Hecht, H. (2011). Locomotor and verbal
distance judgments in action and vista space. Experimental Brain Research, 210(1):13–23.

Betancourt, M. (2018). A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv:1701.02434 [stat].
Birkenbusch, J., Ellermeier, W., and Kattner, F. (2015). Octuplicate this interval! Axiomatic examination of

the ratio properties of duration perception. Attention, Perception, & Psychophysics, 77(5):1767–1780.
Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational Inference: A Review for Statisticians.
Journal of the American Statistical Association, 112(518):859–877.

Blum, M. G. B. and François, O. (2010). Non-linear regression models for Approximate Bayesian Computation.
Statistics and Computing, 20(1):63–73.

83



Bolle, R. M. and Cooper, D. B. (1984). Bayesian Recognition of Local 3-D Shape by Approximating Image
Intensity Functions with Quadric Polynomials. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(4):418–429.

Bowers, J. S. and Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological
Bulletin, 138(3):389–414.

Brayanov, J. B. and Smith, M. A. (2010). Bayesian and “Anti-Bayesian” Biases in Sensory Integration for Action
and Perception in the Size–Weight Illusion. Journal of Neurophysiology, 103(3):1518–1531.

Brent, R. P. (2013). Algorithms for minimization without derivatives. Courier Corporation.
Bresciani, J.-P., Dammeier, F., and Ernst, M. O. (2006). Vision and touch are automatically integrated for the

perception of sequences of events. Journal of Vision, 6(5):2.
Brown, H., Adams, R. A., Parees, I., Edwards, M., and Friston, K. (2013). Active inference, sensory attenuation

and illusions. Cognitive Processing, 14(4):411–427.
Buhusi, C. V. and Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval

timing. Nature Reviews Neuroscience, 6(10):755–765.
Burge, J., Fowlkes, C. C., and Banks, M. S. (2010). Natural-Scene Statistics Predict How the Figure–Ground

Cue of Convexity Affects Human Depth Perception. The Journal of Neuroscience, 30(21):7269–7280.
Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical
Software, 80(1).

Cantlon, J. F., Cordes, S., Libertus, M. E., and Brannon, E. M. (2009). Comment on ”Log or Linear? Distinct
Intuitions of the Number Scale in Western and Amazonian Indigene Cultures”. Science, 323(5910):38–38.

Cappe, O., Godsill, S. J., and Moulines, E. (2007). An Overview of Existing Methods and Recent Advances in
Sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924.

Chambon, V., Pacherie, E., Barbalat, G., Jacquet, P., Franck, N., and Farrer, C. (2011). Mentalizing
under influence: abnormal dependence on prior expectations in patients with schizophrenia. Brain,
134(12):3728–3741.

Chater, N. and Manning, C. D. (2006). Probabilistic models of language processing and acquisition. Trends in
cognitive sciences, 10(7):335–344. Publisher: Elsevier.

Chen, Y., McBain, R., Norton, D., and Ongur, D. (2011). Schizophrenia patients show augmented spatial
frame illusion for visual and visuomotor tasks. Neuroscience, 172:419–426.

Clark, J. J. and Yuille, A. L. (2013). Data fusion for sensory information processing systems, volume 105.
Springer Science & Business Media.

Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). Pearson
correlation coefficient. Noise reduction in speech processing, pages 1–4.

Cohen, R. G., Biddle, J. C., and Rosenbaum, D. A. (2010). Manual obstacle avoidance takes into account
visual uncertainty, motor noise, and biomechanical costs. Experimental Brain Research, 201(3):587–592.

De C. Hamilton, A. F., Jones, K. E., and Wolpert, D. M. (2004). The scaling of motor noise with muscle strength
and motor unit number in humans. Experimental Brain Research, 157(4):417–430.

84



De Gardelle, V. and Mamassian, P. (2014). Does Confidence Use a Common Currency Across Two Visual
Tasks? Psychological Science, 25(6):1286–1288.

De Gardelle, V. and Mamassian, P. (2015). Weighting Mean and Variability during Confidence Judgments.
PLOS ONE, 10(3):e0120870.

De Lange, F. P., Rahnev, D. A., Donner, T. H., and Lau, H. (2013). Prestimulus Oscillatory Activity over Motor
Cortex Reflects Perceptual Expectations. The Journal of Neuroscience, 33(4):1400–1410.

Dehaene, S. (2003). The neural basis of the Weber –Fechner law: a logarithmic mental number line. TRENDS
in Cognitive Sciences, 7(4):145–147.

Dehaene, S., Izard, V., Spelke, E., and Pica, P. (2008). Log or Linear? Distinct Intuitions of the Number Scale
in Western and Amazonian Indigene Cultures. Science, 320(5880):1217–1220.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M.,
and Saurous, R. A. (2017). TensorFlow Distributions. arXiv:1711.10604 [cs, stat].

Drugowitsch, J., Wyart, V., Devauchelle, A.-D., and Koechlin, E. (2016). Computational Precision of Mental
Inference as Critical Source of Human Choice Suboptimality. Neuron, 92(6):1398–1411.

Eisler, H. and Ottander, C. (1963). On the problem of hysteresis in psychophysics. Journal of Experimental
Psychology, 65(6):530–536.

Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., and Hayes, S. J. (2010). Goal-directed
aiming: Two components but multiple processes. Psychological Bulletin, 136(6):1023–1044.

Elliott, D., Hansen, S., Mendoza, J., and Tremblay, L. (2004). Learning to Optimize Speed, Accuracy, and
Energy Expenditure: A Framework for Understanding Speed-Accuracy Relations in Goal-Directed Aiming.
Journal of Motor Behavior, 36(3):339–351.

Engelbrecht, S. E., Berthier, N. E., and O’Sullivan, L. P. (2003). The Undershoot Bias: Learning to Act Optimally
Under Uncertainty. Psychological Science, 14(3):257–261.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal
fashion. Nature, 415(6870):429–433.

Ernst, M. O. and Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences,
8(4):162–169.

Faisal, A. A., Selen, L. P. J., andWolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience,
9(4):292–303.

Fechner, G. T. (1860). Elements of psychophysics, 1860. Publisher: Appleton-Century-Crofts.
Fengler, A., Govindarajan, L. N., Chen, T., and Frank, M. J. (2021). Likelihood approximation networks (LANs)

for fast inference of simulation models in cognitive neuroscience. eLife, 10:e65074.
Fetsch, C. R., Pouget, A., DeAngelis, G. C., and Angelaki, D. E. (2012). Neural correlates of reliability-based

cue weighting during multisensory integration. Nature Neuroscience, 15(1):146–154.
Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal perception and learning: from

behavior to neural representations. Trends in Cognitive Sciences, 14(3):119–130.
Fraisse, P. (1984). Perception and Estimation of Time. Ann.Rev. Psychol., 35:1–36.

85



Geisler, W. S., Najemnik, J., and Ing, A. D. (2009). Optimal stimulus encoders for natural tasks. Journal of
Vision, 9(13):17–17.

Geisler, W. S., Perry, J. S., Super, B., and Gallogly, D. (2001). Edge co-occurrence in natural images predicts
contour grouping performance. Vision research, 41(6):711–724. Publisher: Elsevier.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of
Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721–741.

Gibson, J. J. (1966). The senses considered as perceptual systems.
Girshick, A. R., Landy, M. S., and Simoncelli, E. P. (2011). Cardinal rules: visual orientation perception reflects

knowledge of environmental statistics. Nature Neuroscience, 14(7):926–932.
Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 352(1358):1121–1127.

Griffiths, T., Kemp, C., and B Tenenbaum, J. (2008). Bayesian models of cognition. Publisher: Carnegie
Mellon University.

Griffiths, T. L., Chater, N., Norris, D., and Pouget, A. (2012). How the Bayesians got their beliefs (and what
those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138(3):415–422.

Griffiths, T. L. and Tenenbaum, J. B. (2006). Optimal Predictions in Everyday Cognition. Psychological Science,
17(9):767–773.

Hagura, N., Haggard, P., and Diedrichsen, J. (2017). Perceptual decisions are biased by the cost to act. eLife,
6:e18422.

Harris, C. M. (1995). Does saccadic undershoot minimize saccadic flight-time? A Monte-Carlo study. Vision
Research, 35(5):691–701.

Harris, C. M. and Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature,
394(6695):780–784.

Harris, L. R., Jenkin, M., and Zikovitz, D. C. (2000). Visual and non-visual cues in the perception of linear self
motion. Experimental Brain Research, 135(1):12–21.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Publisher:
Oxford University Press.

Helmholtz, H. v. (1867). Concerning the perceptions in general. Publisher: Appleton-Century-Crofts.
Hillis, J. M., Watt, S. J., Landy, M. S., and Banks, M. S. (2004). Slant from texture and disparity cues: Optimal

cue combination. Journal of Vision, 4(12):1.
Hock, H., Nichols, D., Huisman, A., Rivera, M., and Bukowski, L. (2005). Dynamical vs. judgmental comparison:

hysteresis effects in motion perception. Spatial Vision, 18(3):317–335.
Hoffman, M. D., Gelman, A., and others (2014). The No-U-Turn sampler: adaptively setting path lengths in

Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623.
Hosokawa, T., Kennerley, S. W., Sloan, J., and Wallis, J. D. (2013). Single-Neuron Mechanisms Underlying

Cost-Benefit Analysis in Frontal Cortex. The Journal of Neuroscience, 33(44):17385–17397.
Houlsby, N., Huszár, F., Ghassemi, M., Orbán, G., Wolpert, D., and Lengyel, M. (2013). Cognitive Tomography

Reveals Complex, Task-Independent Mental Representations. Current Biology, 23(21):2169–2175.

86



Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., and Camerer, C. F. (2005). Neural Systems Responding to Degrees
of Uncertainty in Human Decision-Making. Science, 310(5754):1680–1683.

Huang, H. J., Kram, R., and Ahmed, A. A. (2012). Reduction of Metabolic Cost during Motor Learning of Arm
Reaching Dynamics. The Journal of Neuroscience, 32(6):2182–2190.

Izawa, J., Rane, T., Donchin, O., and Shadmehr, R. (2008). Motor Adaptation as a Process of Reoptimization.
The Journal of Neuroscience, 28(11):2883–2891.

Jazayeri, M. and Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature Neuroscience,
13(8):1020–1026.

Jones, K. E., Hamilton, A. F. D. C., and Wolpert, D. M. (2002). Sources of Signal-Dependent Noise During
Isometric Force Production. Journal of Neurophysiology, 88(3):1533–1544.

Jones, M. and Love, B. C. (2011). Bayesian Fundamentalism or Enlightenment? On the explanatory status and
theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(4):169–188.

Kable, J. W. and Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice.
Nature Neuroscience, 10(12):1625–1633.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Kersten, D. and Mamassian, P. (2009). Ideal Observer Theory. Encyclopedia of neuroscience, 5:89–95. Publisher:

Oxford University Press Oxford, UK.
Kersten, D., Mamassian, P., and Yuille, A. (2004). Object Perception as Bayesian Inference. Annual Review of
Psychology, 55(1):271–304.

Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and
computation. Trends in Neurosciences, 27(12):712–719.

Knill, D. C. and Richards, W. (1996). Perception as Bayesian inference. Cambridge University Press.
Knutson, B., Adams, C. M., Fong, G. W., and Hommer, D. (2001). Anticipation of Increasing Monetary Reward

Selectively Recruits Nucleus Accumbens. The Journal of Neuroscience, 21(16):RC159–RC159.
Knutson, B. and Peterson, R. (2005). Neurally reconstructing expected utility. Games and Economic Behavior,

52(2):305–315.
Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and
Brain Sciences, 12(2):251–267.

Kruschke, J. K. (2015). Doing Bayesian Data Analysis. Elsevier, 2 edition.
Kuśmierczyk, T., Sakaya, J., and Klami, A. (2019). Variational Bayesian Decision-making for Continuous

Utilities. In Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Körding, K. (2007). Decision Theory: What ”Should” the Nervous System Do? Science, 318(5850):606–610.
Körding, K. P. and Wolpert, D. M. (2004a). Bayesian integration in sensorimotor learning. Nature,
427(6971):244–247.

Körding, K. P. and Wolpert, D. M. (2004b). The loss function of sensorimotor learning. Proceedings of the
National Academy of Sciences, 101(26):9839–9842.

87



Langer, M. S. and Bülthoff, H. H. (2001). A Prior for Global Convexity in Local Shape-from-Shading. Perception,
30(4):403–410.

Laski, E. V. and Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections Among Nu-
merical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development,
78(6):1723–1743.

Lejeune, H. and Jasselette, P. (1986). Accurate DRL performance in the pigeon: Comparison between perching
and treadle pressing. Animal Learning & Behavior, 14(2):205–211.

Lejeune, H. and Richelle, M. (1982). Differential reinforcement of perching duration in the pigeon : a
comparison with differential-reinforcement-of-low-rate key-pecking. Behaviour Analysis Letters, 2. Publisher:
Elsevier.

Lewis, F. L., Vrabie, D., and Syrmos, V. L. (2012). Optimal control. John Wiley & Sons.
Longo, M. R. and Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for

characteristic biases and compression. Neuropsychologia, 45(7):1400–1407.
Lowe, C. F., Harzem, P., and Spencer, P. T. (1979). Temporal Control of Behavior and the Power Law. Journal
of the Experimental Analysis of Behavior, 31(3):333–343.

Lueckmann, J.-M., Bassetto, G., Karaletsos, T., and Macke, J. H. (2019). Likelihood-free inference with
emulator networks. In Ruiz, F., Zhang, C., Liang, D., and Bui, T., editors, Proceedings of The 1st Symposium
on Advances in Approximate Bayesian Inference, volume 96 of Proceedings of Machine Learning Research,
pages 32–53. PMLR.

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference with probabilistic population
codes. Nature Neuroscience, 9(11):1432–1438.

MacKay, D. M. (1963). Psychophysics of Perceived Intensity: A Theoretical Basis for Fechner’s and Stevens’
Laws. Science, 139(3560):1213–1216.

Mamassian, P. and Landy, M. S. (2001). Interaction of visual prior constraints. Vision Research,
41(20):2653–2668.

Marr, D. (2010). Vision: a computational investigation into the human representation and processing of visual
information. MIT Press, Cambridge, Mass. OCLC: ocn472791457.

McCoy, A. N. and Platt, M. L. (2005). Risk-sensitive neurons in macaque posterior cingulate cortex. Nature
Neuroscience, 8(9):1220–1227.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092. Publisher:
American Institute of Physics.

Mittelstaedt, M.-L. and Mittelstaedt, H. (2001). Idiothetic navigation in humans: estimation of path length.
Experimental Brain Research, 139(3):318–332.

Neupärtl, N. and Rothkopf, C. A. (2021). Inferring perceptual decision making parameters from behavior in
production and reproduction tasks. Publisher: arXiv Version Number: 1.

Neupärtl, N., Tatai, F., and Rothkopf, C. A. (2020). Intuitive physical reasoning about objects’ masses
transfers to a visuomotor decision task consistent with Newtonian physics. PLOS Computational Biology,
16(10):e1007730.

88



Notredame, C.-E., Pins, D., Deneve, S., and Jardri, R. (2014). What visual illusions teach us about schizophrenia.
Frontiers in Integrative Neuroscience, 8.

Papamakarios, G. and Murray, I. (2016). Fast \epsilon -free Inference of Simulation Models with Bayesian
Conditional Density Estimation. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

Papamakarios, G., Sterratt, D., and Murray, I. (2019). Sequential Neural Likelihood: Fast Likelihood-free
Inference with Autoregressive Flows. In Chaudhuri, K. and Sugiyama, M., editors, Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of
Machine Learning Research, pages 837–848. PMLR.

Pellicano, E. and Burr, D. (2012). When the world becomes ‘too real’: a Bayesian explanation of autistic
perception. Trends in Cognitive Sciences, 16(10):504–510.

Pessoa, V., Monge-Fuentes, V., Simon, C., Suganuma, E., and Tavares, M. (2008). The Müller-Lyer Illusion as
a Tool for Schizophrenia Screening. Reviews in the Neurosciences, 19(2-3).

Petzschner, F. H. and Glasauer, S. (2011). Iterative Bayesian Estimation as an Explanation for Range and
Regression Effects: A Study on Human Path Integration. The Journal of Neuroscience, 31(47):17220–17229.

Petzschner, F. H., Glasauer, S., and Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation.
Trends in Cognitive Sciences, 19(5):285–293.

Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41(24):3145–3161.
Portugal, R. D. and Svaiter, B. F. (2011). Weber-Fechner Law and the Optimality of the Logarithmic Scale.
Minds and Machines, 21(1):73–81.

Poulton, E. C. (1968). The new psychophysics: Six models for magnitude estimation. Psychological Bulletin,
69(1):1–19.

Prins, N. and others (2016). Psychophysics: a practical introduction. Academic Press.
Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L., and Dreher, J.-C. (2010). Separate Valuation

Subsystems for Delay and Effort Decision Costs. The Journal of Neuroscience, 30(42):14080–14090.
Rahnev, D. and Denison, R. N. (2018). Suboptimality in perceptual decision making. Behavioral and Brain
Sciences, 41:e223.

Ramachandran, V. S. (1988). Perception of shape from shading. Nature, 331(6152):163–166.
Renart, A. and Machens, C. K. (2014). Variability in neural activity and behavior. Current Opinion in
Neurobiology, 25:211–220.

Robert, C. P. and Casella, G. (2004). Monte Carlo statistical methods. Springer Texts in Statistics. Springer-
Verlag, New York, second edition.

Roberts, W. A. (2006). Evidence that pigeons represent both time and number on a logarithmic scale.
Behavioural Processes, 72(3):207–214.

Rock, I. (1983). The logic of perception.
Rosas, P. and Wichmann, F. A. (2011). Cue combination: Beyond optimality. Sensory cue integration, pages
144–52. Publisher: Oxford University Press.

89



Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., and Rushworth, M. F. S. (2006). Separate
neural pathways process different decision costs. Nature Neuroscience, 9(9):1161–1168.

Scheler, G. (2017). Logarithmic distributions prove that intrinsic learning is Hebbian. F1000Research, 6:1222.
Schlicht, E. J. and Schrater, P. R. (2007). Effects of visual uncertainty on grasping movements. Experimental
Brain Research, 182(1):47–57.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. Science,
275(5306):1593–1599.

Shams, L., Ma, W. J., and Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept.
Shepard, R. N. (1981). Psychological relations and psychophysical scales: On the status of “direct” psychophys-

ical measurement. Journal of Mathematical Psychology, 24(1):21–57.
Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D., and Wolpert, D. M. (2005). Evidence for Sensory Prediction

Deficits in Schizophrenia. American Journal of Psychiatry, 162(12):2384–2386.
Simoncelli, E. P. (1993). Distributed analysis and representation of visual motion. Unpublished doctoral
dissertation, MIT.

Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology,
13(2):144–149.

Sims, C. R. and Gray, W. D. (2008). Adaptation to embodied dynamics: Evidence from Bayes’ ball. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 30. Issue: 30.

Sisson, S. A., Fan, Y., and Beaumont, M. (2018). Handbook of approximate Bayesian computation. CRC Press.
Sloman, S. A. and Lagnado, D. (2015). Causality in Thought. Annual Review of Psychology, 66(1):223–247.
Sohn, H. and Jazayeri, M. (2021). Validating model-based Bayesian integration using prior–cost metamers.
Proceedings of the National Academy of Sciences, 118(25):e2021531118.

Stengård, E. and Van Den Berg, R. (2019). Imperfect Bayesian inference in visual perception. PLOS Computa-
tional Biology, 15(4):e1006465.

Stevens, S. S. (1961). To Honor Fechner and Repeal His Law: A power function, not a log function, describes
the operating characteristic of a sensory system. Science, 133(3446):80–86. Publisher: American Association
for the Advancement of Science.

Sun, H.-J., Campos, J. L., and Chan, G. S. W. (2004a). Multisensory integration in the estimation of relative
path length. Experimental Brain Research, 154(2):246–254.

Sun, H.-J., Campos, J. L., Young, M., Chan, G. S. W., and Ellard, C. G. (2004b). The Contributions of Static
Visual Cues, Nonvisual Cues, and Optic Flow in Distance Estimation. Perception, 33(1):49–65.

Sun, J. Z., Wang, G. I., Goyal, V. K., and Varshney, L. R. (2012). A framework for Bayesian optimality of
psychophysical laws. Journal of Mathematical Psychology, 56(6):495–501.

Tassinari, H., Hudson, T. E., and Landy, M. S. (2006). Combining Priors and Noisy Visual Cues in a Rapid
Pointing Task. The Journal of Neuroscience, 26(40):10154–10163.

Tauber, S., Navarro, D. J., Perfors, A., and Steyvers, M. (2017). Bayesian models of cognition revisited: Setting
optimality aside and letting data drive psychological theory. Psychological Review, 124(4):410–441.

90



Teghtsoonian, R. and Teghtsoonian, M. (1978). Range and regression effects in magnitude scaling. Perception
& Psychophysics, 24(4):305–314.

Tieleman, T., Hinton, G., and others (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31.

Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature
Neuroscience, 5(11):1226–1235.

Trommershäuser, J., Landy, M. S., and Maloney, L. T. (2006). Humans Rapidly Estimate Expected Gain in
Movement Planning. Psychological Science, 17(11):981–988.

Trommershäuser, J., Maloney, L. T., and Landy, M. S. (2003). Statistical decision theory and the selection of
rapid, goal-directed movements. J. Opt. Soc. Am. A, 20(7):1419–1433. Publisher: Optica Publishing Group.

Trommershäuser, J., Maloney, L. T., and Landy, M. S. (2008). Decision making, movement planning and
statistical decision theory. Trends in Cognitive Sciences, 12(8):291–297.

Van Beers, R. J., Haggard, P., and Wolpert, D. M. (2004). The Role of Execution Noise in Movement Variability.
Journal of Neurophysiology, 91(2):1050–1063.

Van Bergen, R. S., Ji Ma, W., Pratte, M. S., and Jehee, J. F. M. (2015). Sensory uncertainty decoded from
visual cortex predicts behavior. Nature Neuroscience, 18(12):1728–1730.

Van Den Berg, R., Vogel, M., Josić, K., and Ma, W. J. (2012). Optimal inference of sameness. Proceedings of
the National Academy of Sciences, 109(8):3178–3183.

Vilares, I. and Kording, K. (2011). Bayesian models: the structure of the world, uncertainty, behavior, and the
brain: Bayesian models and the world. Annals of the New York Academy of Sciences, 1224(1):22–39.

Walton, M., Kennerley, S., Bannerman, D., Phillips, P., and Rushworth, M. (2006). Weighing up the benefits of
work: Behavioral and neural analyses of effort-related decision making. Neural Networks, 19(8):1302–1314.

Walton, M. E., Bannerman, D. M., Alterescu, K., and Rushworth, M. F. S. (2003). Functional Specialization
within Medial Frontal Cortex of the Anterior Cingulate for Evaluating Effort-Related Decisions. The Journal
of Neuroscience, 23(16):6475–6479.

Weber, E. H. (1831). De Pulsu, resorptione, auditu et tactu: Annotationes anatomicae et physiologicae. Koehler.
Weber, R. B. and Daroff, R. B. (1971). The metrics of horizontal saccadic eye movements in normal humans.
Vision Research, 11(9):921–IN2.

Wei, X.-X. and Stocker, A. A. (2015). A Bayesian observer model constrained by efficient coding can explain
’anti-Bayesian’ percepts. Nature Neuroscience, 18(10):1509–1517.

Wei, X.-X. and Stocker, A. A. (2017). Lawful relation between perceptual bias and discriminability. Proceedings
of the National Academy of Sciences, 114(38):10244–10249.

Weiss, Y., Simoncelli, E. P., and Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience,
5(6):598–604.

Whiteley, L. and Sahani, M. (2008). Implicit knowledge of visual uncertainty guides decisions with asymmetric
outcomes. Journal of Vision, 8(3):2.

Willey, C. R. and Liu, Z. (2018). Long-term motor learning: Effects of varied and specific practice. Vision
Research, 152:10–16.

91



Wixted, J. T. and Thompson-Schill, S. L. (2018). Stevens’ Handbook of Experimental Psychology and Cognitive
Neuroscience, Language and Thought, volume 3. John Wiley & Sons.

Wolpert, D. M. and Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature
Neuroscience, 3(S11):1212–1217.

Wolpert, D. M. and Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology,
22(6):996–1003.

Wyart, V. and Koechlin, E. (2016). Choice variability and suboptimality in uncertain environments. Current
Opinion in Behavioral Sciences, 11:109–115.

Wynn, P. (1956). On a device for computing the e m (S n) transformation. Mathematical Tables and Other
Aids to Computation, pages 91–96. Publisher: JSTOR.

Yi, L. (2009). Do rats represent time logarithmically or linearly? Behavioural Processes, 81(2):274–279.
Yoo, S. B. M., Hayden, B. Y., and Pearson, J. M. (2021). Continuous decisions. Philosophical Transactions of
the Royal Society B: Biological Sciences, 376(1819):20190664.

Zeiler, M. D. and Hoyert, M. S. (1989). TEMPORAL REPRODUCTION. Journal of the Experimental Analysis of
Behavior, 52(2):81–95.

Zemel, R. S., Dayan, P., and Pouget, A. (1998). Probabilistic Interpretation of Population Codes. Neural
Computation, 10(2):403–430.

92



A. Appendix
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Figure A.1.: Cost Function Gen1B – α ∈ {.5, 1.0,2.0}, β ∈ {.5, .7, .9}
The dashed grey line represents the target t. Parameter β is constant on the left and α is constant
on the right (respective bold value). Parameter values increase from dotted to solid line styles.

93



action a

Lo
ss

 
(t,

a)

Influence of 

action a

Influence of 

Figure A.2.: Cost Function IG1B – σcost ∈ {.5,1.0, 2.0}, β ∈ {.2, .4, .6}
The dashed grey line represents the target t. Parameter β is constant on the left and σcost is
constant on the right (respective bold value). Parameter values increase from dotted to solid
line styles.
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Figure A.3.: Solvability Plot for Gen1B – Histograms of samples with (blue) and without (red) existing
solution. The histogram without existing solutions is plotted above the histogram with existing
solutions.
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Figure A.4.: Solvability Plot for IG1B – Histograms of samples with (blue) and without (red) existing solution.
The histogram without existing solutions is plotted above the histogram with existing solutions.
Any values of β lower than 0.9 did not lead to solvable problems, therefore we only sampled
these values in [0.9, 1.0]. This is a perfect example of how the form and parameterization of the
cost function changes valid parameter ranges.
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Figure A.5.: MCMC Numerical versus Analytical Solver: Hitting Target Regime
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Figure A.6.: MCMC Numerical versus Analytical Solver: Undershoot via Cost Regime
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Figure A.7.: MCMC Numerical versus Analytical Solver: Undershoot via Prior Regime
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Figure A.8.: Inference Results for Bean Bag (BB) Data– 95%HDI for each parameter per subject. Dots denote
the inferred posterior means, and thick lines denote the area between the central quartiles.
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Figure A.9.: Inference Results for Bean Bag (BB) Data– 95%HDI for each parameter per subject. Dots denote
the inferred posterior means, and thick lines denote the area between the central quartiles.
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Figure A.10.: Inference Results for Puck (PU) Data – 95% HDI for each parameter per subject. Dots denote
the inferred posterior means, and thick lines denote the area between the central quartiles.
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Figure A.11.: Inference Results for Puck (PU) Data – 95% HDI for each parameter per subject. Dots denote
the inferred posterior means, and thick lines denote the area between the central quartiles.
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Figure A.12.: Example of a Bimodal Posterior – Bimodal posterior observed for subject OK18ER with puck F.
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