
Self-Paced Absolute Learning Progress as a Regularized Approach
to Curriculum Learning

Ulla Scheler * 1 Tobias F. Niehues * 1 Pascal Klink 1

Abstract

The usability of Reinforcement Learning is re-
stricted by the large computation times it requires.
Curriculum Reinforcement Learning speeds up
learning by defining a helpful order in which an
agent encounters tasks, i.e. from simple to hard.
Curricula based on Absolute Learning Progress
(ALP) have proven successful in different envi-
ronments, but waste computation on repeating
already learned behaviour in new tasks. We solve
this problem by introducing a new regulariza-
tion method based on Self-Paced (Deep) Learn-
ing, called Self-Paced Absolute Learning Progress
(SPALP). We evaluate our method in three differ-
ent environments. Our method achieves perfor-
mance comparable to original ALP in all cases,
and reaches it quicker than ALP in two of them.
We illustrate possibilities to further improve the
efficiency and performance of SPALP.

1. Introduction
In Reinforcement Learning (RL) an agent adapts its actions
to maximize a reward signal it receives from its environment,
e.g. (Sutton & Barto, 2018). In combination with methods
from Deep Learning, RL was successfully employed in vir-
tual gaming environments like Atari (Mnih et al., 2013) or
Starcraft (Vinyals et al., 2019), as well as in physical manip-
ulation tasks, e.g. (Andrychowicz et al., 2020; Rajeswaran
et al., 2018; Kalashnikov et al., 2018). Before these levels
of performance are reached, though, an agent often takes
millions of steps while it tries different actions (this is called
’exploration’) and encounters different variants of the en-
vironment. Instead of optimizing the agent’s exploration
of the parameter space, Curriculum Learning (CL) (Bengio

*Equal Contribution 1Department of Intelligent Autonomous
Systems, Technical University of Darmstadt, Darmstadt, Ger-
many. Correspondence to: Ulla Scheler <ulla.scheler@stud.tu-
darmstadt.de>, Tobias F. Niehues <niehues.tobias@gmail.com>.
This work originated from the master’s module Integrated Project:
Learning Robots at Technical University Darmstadt and we re-
ceived course credit for it.

et al., 2009; Matiisen et al., 2020) tries to systematically
present the agent with an optimal order of the parameter
space samples. In this context, the algorithm that chooses
the next training environment based on distributions gener-
ated by itself is often referred to as the teacher, while the
executing agent is correspondingly called student.
There are several approaches to implementing a curriculum,
for example deriving goal tasks via GANs (Florensa et al.,
2018), incrementally adjusting the sampling distribution
to resemble the distribution of a goal task, known as Self-
Paced Deep Reinforcement Learning (SPDL) (Klink et al.,
2020b), and sampling techniques that sample the parameter
spaced based on recent learning advancement as in Absolute
Learning Progress (ALP) (Portelas et al., 2020).
In this work, we apply insights from Self-Paced Learning
as regularization in ALP settings and evaluate this approach
in various environments.

1.1. Self-Paced Learning

The usual goal of self-paced learning (Klink et al., 2020b;a)
is to master a goal task, defined as a subspace of the full
parameter space, by gradually adjusting a distribution of
tasks p(c|ν) used for sampling the training contexts c and
its parameters ν to the goal task distribution µ(c). This
can be accomplished by incorporating the KL-divergence
between the sampling and the goal distribution into the
objective function of the expected reward (1), given the
reward function R(ω, c) and the policy πω, parameterized
by ω. The parameter α controls the weight of the KL-
divergence relative to the reward objective.

max
ω,ν

Ep(c|ν)[R(ω, c)]− αDKL(p(c|ν) ∥ µ(c)) (1)

Equation (1) can be solved by alternately maximizing w.r.t.
ω and ν while gradually increasing α to converge to the
goal distribution. In other words, the teacher attempts for
the student to receive a good reward, while also exposing it
to ever closer approximations of the goal environment.
Recent work in self-paced learning (Klink et al., 2021) has
found that optimizing this modified objective function is
equal to maximizing objective (2) w.r.t the sampling param-
eters ω.

ar
X

iv
:2

30
6.

05
76

9v
1

 [
cs

.L
G

]
 9

 J
un

 2
02

3

Self-Paced Absolute Learning Progress

Please note that this version was originally derived from a
supervised learning scenario in which the objective function
aimed to minimize losses (Kumar et al., 2010; Jiang et al.,
2015). Since application to an RL setting involves trans-
forming the objective function from a loss minimization
to a reward maximization and all losses previously were
required to be all positive, the rewards fed into (2) now need
to be all negative, e.g. by an appropriate transformation
beforehand.

max
ω

Eµ(c)[−α(1− exp(
1

α
R(ω, c)))] (2)

Note that SPDL only indirectly includes information about
past experiences and learning progress in form of the
learner’s policy and the teacher’s sampling distribution: The
learner prefers to repeat behavior that previously performed
well while the teacher fits its sampling distribution taking
into account the rewards from previous iterations. In our
approach we will combine SPDL’s regularization objective
with a more explicit take on learning progress and past ex-
perience.

1.2. Absolute Learning Progress (ALP)

The Absolute Learning Progress model (ALP-GMM) pro-
posed by Portelas et al. (2020) is an approach to model in-
trinsic motivation in reinforcement learning (Oudeyer et al.,
2007; Baranes & Oudeyer, 2013), which is inspired by mod-
els of intrinsic motivation in humans (Moulin-Frier et al.,
2014). The term ’GMM’ refers to the use of Gaussian Mix-
ture models used to represent the sampling distribution.
ALP-GMM uses the so-called Absolute Learning Progress
as a measure of how much progress was gained by training
on the current task (3). Tasks and their ALPs are saved
into a reward history. The reward history is implemented
as a first-in-first-out buffer of fixed size. To calculate the
ALP for a reward rnew for a task θnew we look up the nearest
neighbor θNN in the reward history and use its reward rNN:

ALP = |rnew − rNN| (3)

The sampling distribution during training is defined by a
Gaussian mixture model (GMM) fitted to the ALPs of the
batch of the last N sampled tasks. The next task is then with
a probability p either sampled from the GMM or uniformly
from the parameter space, to ensure exploration. A basic
overview of ALP-GMM can be found in Figure 2. By basing
most of the sampling on ALPs, the agent is provided with
samples from subspaces of the parameter space that yielded
the most progress in the last iterations. At the same time,
the algorithm remembers the progress from older examples
in form of the reward history.

One of the biggest advantages of ALP-GMM over other

Curriculum Learning approaches is its quite simple concept,
for it does not need any structures like Markov Decision
Processes (MDPs) or multi-armed bandits, as used by Mati-
isen et al. (2020) or Graves et al. (2017).
Furthermore, it only needs tuning of relatively few hyperpa-
rameters. One must basically only provide hyperparameters
defining how to fit the GMM, as the ALP metric itself does
not need any additional hyperparameters.

Yet, please note that ALP-GMM does not differentiate
whether the progress was achieved in a task where the agent
is already quite proficient or in one where its performance
was previously low. It cares only about the absolute dif-
ference between the current performance and the closest
previous performance saved in the reward history. Thus
ALP-GMM might waste computation on repeating already
learned behaviour in new tasks or tasks it has not seen in a
while. In these cases the ALP might be high, but does not
signify any real learning progress.
The regularizer we introduce will extend ALP by mostly pre-
ferring environment parameterizations which yield higher
rewards. The logic behind this is the following: Progress in
a task from a lower to a low reward might not mean progress
in the policy, i.e. the student most likely only utilizes what
it already learned somewhere else but is not improving its
overall behavior. In contrast, progress in a task from a high
reward ri to a higher reward ri+1 is more likely to stem
from actual new learning as simple behaviors were prob-
ably already used to reach ri and will not lead to further
improvements.

Figure 1. Effect of squashing function fα(x) on ALP calcula-
tion in SPALP: Higher rewards are squashed less and thus the
same absolute difference in rewards leads to a larger overall ALP.
Squashing function plotted with α = 0.5.

Self-Paced Absolute Learning Progress

Figure 2. A high-level illustration of how ALP-GMM and SPALP work. Note that the only difference between the two algorithms lies
in how the ALP are calculated. Left side: The student makes N runs. Environments are sampled from current teacher distribution each run.
Right side: Calculate ALP for each parameter-reward-pair bi in Buffer and fit GMM.

2. Self-Paced Absolute Learning Progress
We introduce Self-Paced Absolute Learning Progress
(SPALP) as a variant of the ALP-GMM model, making
use of the regularization in the modified objective function
(2) from SPDL. This yields a regularization function for
the rewards used when calculating the absolute learning
progress given by (5), and leads to our so-called regularized
ALP (4). An overview of our approach can be found in
Algorithm 1 and Figure 2.

ALP = |fα(rnew)− fα(rold)| (4)

We modify all rewards received from the different envi-
ronments in two ways: Firstly, as ranges of rewards differ
between environments, we normalize all environments to the
interval [0, 1]. Secondly, since the regularization requires all
rewards to be negative (as mentioned in 1.1), we shift these
normalized rewards by −1 into the interval Ir = [−1; 0]
before applying the regularization.

fα(x) = −α(1− exp(
x

α
)) (5)

The function fα(x), shown in Figure 3, can be thought of as
a softener on ALPs calculated from low rewards. An exam-
ple of this can be seen in Figure 1. Smaller values of α lead
to more squashing. Rewards are squashed into the interval
[−α, 0.0] instead of the regular interval Ir. Low rewards
are squashed more strongly than high rewards. Thereby the
ALPs calculated from low squashed rewards also become
smaller. High rewards remain mostly untouched, because
fα approaches linear behavior near the origin. Thus, the reg-
ularization employs a rather conservative sampling strategy
by focusing on tasks that already yield high rewards.
For high values of α the regularization function fα con-
verges to the identity mapping in Ir and we can think of the
regularization as being turned off in this case.

For determining the exact value of α and thus the strength of
the squashing in the regularization function fα, we needed
an additional condition. Our solution is to choose α such
that it fulfills equation (6). That is, we choose α in a way
that the squashed rewards are reaching a bound rb, which
is a new hyperparameter specific to SPALP. The bound rb
can intuitively be understood as the mean reward we are
striving for in the region of the parameter space previously
sampled from. If the rewards ri were low, we need a stronger
regularization to reach rb, resulting in a low value of α and
vice versa.

Self-Paced Absolute Learning Progress

Figure 3. Squashing function fα(x) for different values of alpha.
In negative direction each curve converges to the negative α-values
(indicated by the dashed lines), while they increase exponentially
in the positive direction. Since all rewards are normalized into
[−1.0; 0.0], this is the interval of actual relevance for our work.
Higher values of α lead to a more linear behavior, while smaller
values lead to a stronger squashing of smaller rewards.

1

N

∑
i

fα(ri) = rb (6)

By choosing α the way we do, the regularization gets weaker
the closer the mean reward gets to the bound rb, i.e. in
general the longer the agent trains, the weaker the regular-
ization becomes. To further support this behavior, we turn
the regularization off completely if the mean reward of the
last N samples exceeded rb and fall back to vanilla ALP-
GMM. This ensures exploration, since the regularization
introduces a bias by focusing on tasks on which we were
already performing well, while the unregularized version
treats all ALPs equally (cf. figure 1). Once the unregularized
mean reward falls below rb, we turn it back on again.

The complete implementation is shown by Algorithm 1.
Please note that we are not only sampling from the fitted
GMM, but also uniformly take random samples from the
parameter space with a probability of p = 0.2 to ensure
exploration independent of the GMM, just as vanilla ALP-
GMM does.

3. Experiments
For evaluation and comparison of our teaching algorithm
we used three different environments as shown in Appendix
A; a toy environment where the progress of rewards in the
sample space is approximated by a mathematical function
for different subspaces, the bipedal walker environment

Algorithm 1 Self-Paced Absolute Learning Progress
1: Input: fitting rate N , bounded parameter space P , stu-

dent S, teacher T
2: Initialize First-in-First-Out buffer B with max size N
3: Initialize reward history database H
4: Bootstrapping for N iterations
5: while not terminated do
6: update α
7: calculate ALP of last N steps using the reward of the

nearest neighbor (in parameter space) in H
8: fit teacher-GMM on ALPs
9: for N runs do

10: sample θi from P using the GMM of T
11: write reward ri from S in environment Eθ into B
12: end for
13: end while
14: return S

as used by Portelas et al. (2020) for evaluation of ALP-
GMM and the ball catching environment as used by Klink
et al. (2020b; 2021) for evaluation of their Self-Paced Deep
Reinforcement Learning.

3.1. Toy Environment

The toy environment already provided by Portelas et al.
(2020) subdivides an n-dimensional space into (hyper)cubes
along each dimension. To simulate in making progress on
the rewards, sampling from a cube linearly increases the re-
ward for sampling from this very cube the next time. At first,
only the cube in the bottom left (equivalent to the suppos-
edly easiest parameter configurations) yields a reward when
being sampled from. All other cubes need to be unlocked
first by having a ‘mastered’ hypercube in their immediate
vicinity. A cube is ‘mastered’ if it yielded a reward higher
than 75. The maximum reward for each cube is capped at
100.
We extended this environment by incorporating additional
reward progress shapes besides the aforementioned linear
behavior. To achieve a more realistic change in the rewards,
we found a sigmoidal curve to be an adequate choice, as the
reward needs some time at first to increase more strongly
(equivalent to an agent getting used to a task for the first
time) and only yields small progress before saturating to
the reward maximum (equivalent to the agent possibly not
being able to make any more progress).
Further, we wanted to also add a concept of transfer learning,
where newly discovered cubes benefit from performances
in neighboring cubes in their direct vicinity. For this, when
sampling from each cube for the first time, it already yields
a reward equal to the average reward already obtained from
its neighboring cubes.

Our main metric used for evaluation of different algorithms

Self-Paced Absolute Learning Progress

in this environment was the percentage of ‘mastered’ hy-
percubes over the whole parameter space. Table 1 shows
this performance in comparison to random sampling and
ALP-GMM.
rb = −0.4 resulted in the best performance remarkably
often; still, this is not in line with the results of the other
environments, shown in sections 3.2 and 3.3.

Table 1. Performance in the toy environment for different con-
figurations (± standard error). ‘TL’ indicates whether Transfer
Learning was simulated. Performance measured as percentage of
mastered hypercubes. For d = 2, each dimension consisted of 10
cubes; 5 cubes per dimension for d = 3. 3 runs per configura-
tion with 40000 episodes each. For SPALP the best performing
rb was chosen each time. Performances of the best teachers per
configuration are highlighted bold.

d REWARD TL TEACHER rb PERFORMANCE

2

LINEAR

×
RANDOM - 14.67 ± 0.17
ALPGMM - 49.89 ± 1.47

SPALP -0.3 53.00 ± 7.51
√ RANDOM - 30.70 ± 0.37

ALPGMM - 80.86 ± 2.29
SPALP -0.4 91.33 ± 2.19

SIGMOID

×
RANDOM - 26.96 ± 0.29
ALPGMM - 43.41 ± 1.62

SPALP -0.4 52.33 ± 6.69
√ RANDOM - 58.63 ± 0.57

ALPGMM - 85.26 ± 1.47
SPALP -0.5 91.00 ± 3.51

3

LINEAR

×
RANDOM - 15.47 ± 0.15
ALPGMM - 47.79 ± 2.98

SPALP -0.4 65.07 ± 1.48
√ RANDOM - 57.69 ± 1.51

ALPGMM - 96.95 ± 1.56
SPALP -0.4 100.00 ± 0.00

SIGMOID

×
RANDOM - 33.24 ± 0.79
ALPGMM - 42.79 ± 1.87

SPALP -0.9 52.00 ± 7.43
√ RANDOM - 99.82 ± 0.08

ALPGMM - 92.83 ± 2.17
SPALP -0.6 100.00 ± 0.00

3.2. Bipedal Walker Environment

We use the Bipedal Walker environment by Portelas et al.
(2020) in the standard configuration provided by the author
(default leg length of the walker, obstacle spacing from 0 to
6 and obstacle height from 0 to 3), which is in turn adapted
from OpenAI (2018).
The goal of the agent in this environment is to walk as long
as possible without falling down. Reward is received for
moving forward, while the application of motor torque costs
a small amount of points and falling down is penalized and
ends the episode. Falling is caused either by the walker’s
inability to walk or inability to cross an obstacle. Note that
the parameter space, consisting of obstacle spacing and

Figure 4. Percentage of mastered environments for the bipedal
walker environment. After each training epoch the student is
tested in 50 environments of the parameter space. An environment
counts as ”mastered” if the student achieves more than a certain
reward. Figure shows mean performance and standard error of 10
(ALP-GMM) or 3 (SPALP) seeds.

obstacle height, contains regions that are infeasible due to
the agent’s leg length. The state of the agent consists of
several velocity measures of the joints, 10 lidar rangefinder
measurements and legs contact with the ground.

As student we used SAC (Haarnoja et al., 2018) from the
Stable Baselines library (Hill et al., 2018), again
slightly altered by (Portelas et al., 2020). For comparison,
ALP-GMM was always run with the parameters provided
by Portelas et al. (2020).
We evaluated the performance of the teachers by evaluating
how many of 50 different walker environments they were
able to master. Because these test environments were
chosen at random from all over the parameter space, i.e.
with varying obstacle spacing and obstacle height, there are
some that were infeasible to the default walker due to its leg
length. An environment counts as ”mastered” if the student
reached more than 230 points. This arbitrary bound was
again modeled after (Portelas et al., 2020).

The results are shown in figure 4. Please note that due
to time and computing constraints, the SPALP results
represent only three seeds and correspondingly more noise.
To illustrate: The dips in the SPALP curves are due to noise
of an errant seed. SPALP with rb = −0.1 reaches an overall
performance similar to ALP-GMM but does so earlier. In
the case of rb = −0.1, the reward bound was not reached
in any of the seeds and correspondingly, squashing was
always turned on. To show the negative influence of a badly

Self-Paced Absolute Learning Progress

chosen reward bound, we also included the performance
of the worst bound (rb = −0.3). We should note that low
rb (−0.8;−0.9) also performed well in the bipedal walker
environment. In these cases the reward bound was reached
before the first fitting of the teacher distribution, though. As
this is equivalent to running vanilla ALP-GMM, we did not
include these runs in the results.

To study the differences in the teacher’s sampling distribu-
tions, we plotted the Gaussian Mixture Models after each
fitting period. Across all the runs we analyzed, it became
apparent that SPALP focuses on the easiest subspace of the
parameter space, while ALP advances to more difficult re-
gions more quickly (moving the concentration of samples
diagonally to the bottom right in the parameter space). This
is shown exemplarily for two successful seeds in figure 5.
In the case of unsuccessful SPALP seeds, we noticed that
from the beginning the teacher did not focus on the easiest
subspace to the same extent.

Figure 5. Different sampling behaviors of ALP-GMM and
SPALP, illustrated in the bipedal walker environment for episodes
250, 3000 and 6000. Blue ellipses represent the GMMs, the dots
represent single samples. Yellow samples represent a low (regular-
ized) ALP, red samples represent a high (regularized) ALP. Both
algorithms start with a general exploration period of 250 episodes.
After that, SPALP focuses its sampling on the easiest subspace
of the parameter space (low and widely spaced obstacles, upper
left corner). In contrast, ALP-GMM samples more broadly in the
low obstacle height part of the parameter space. Although the data
represents a single, successful seed per algorithm of ALP-GMM
and SPALP with rb = −0.1, the patterns were consistent over all
successful seeds.

3.3. Ball Catching Environment

The ball catching environment is the same as used by Klink
et al. (2020b; 2021); consult his paper for any experimental
details on the simulation please, since for our purposes not
all simulation details are relevant1.
The environment is defined by the distance from which the
ball is thrown and its target position in the catching plane
of the robot. The reward function of this task is sparse, as
the agent only receives a reward when catching the ball but
control cost for any movements made at all times.
To provide the robot with a good initial behavior and the
possibility to focus on the catching task instead of learning
its plain controls, it was pre-trained to a policy by which it
is capable of holding its initial position.

For training we used SAC (Haarnoja et al., 2018) as the
student, as provided by the Stable Baselines library
(Hill et al., 2018) and used by Klink et al. (2020b; 2021).
The GMMs in ALP and SPALP were fitted after each 200
iterations during training.
We then evaluated the performance of the trained model
for different values of rb in SPALP by running 200 runs
on random ball catching tasks and measuring the percent-
age of successful catches, exemplary shown in Figure 7.
The value of rb = −0.1 was one of the best performers
while rb = −0.7 was one of the worst. In general, high
rb (−0.1;−0.2) and low rb (−0.8;−0.9) performed well in
the ball catching environment. Yet, for low rb the bound
was often reached almost instantly, so the regularization
was never put to work in the first place - for this reason we
excluded those results.
In contrast to the bipedal walker environment (see section
3.2), we did not find any prominent differences in the ALP
and SPALP teachers’ sampling behaviors for the ball catch-
ing environment. Samples yielding a high ALP were spread
over a large section of the parameter space.

We also evaluated how the value of α changed during train-
ing runs. Low values of α lead to strong squashing, which
is only needed in order to fulfill equation (6) when the mean
reward is far from the bound rb. Because of this we sup-
posed that high values of α (and thus a weak regularization)
should occur shortly before surpassing rb; cf. figure 3 for
more intuition on that. Our findings support that hypothesis,
as figure 6 shows.

4. Discussion
4.1. Overall performance of SPALP

The results from the experiments show that SPALP with a
properly chosen reward bound can reach at least the same
performance levels as vanilla ALP-GMM but might do so

1For simulation the MuJoCo physics engine was used.

http://www.mujoco.org

Self-Paced Absolute Learning Progress

Figure 6. Evolution of α for one sample run in the ball catching
environment with hyperparameter rb = −0.1. Most of the time
the value stays below 1, but is spiking to really high values every
now and then. These spikes can be explained by choosing a new
α when the mean reward is already close to rb. Since we choose
α s. t. the mean regularized reward is equal to rb - cf. equation
(6) -, this leads to a high α and thus a weak regularization. This is
also supported by spikes regularly occuring before plateaus. The
plateaus indicate every time the bound rb was surpassed by the
mean reward and we fall back to vanilla ALP-GMM, thereby also
turning off any α-updates.

sooner. This is exactly what we would expect from a reward
regularizer: SPALP uses the same semantic structures as
ALP-GMM, so it seems unreasonable to expect it to surpass
the performance of ALP-GMM in absolute terms.
We generally expect SPALP to perform even better, i.e.
quicker, than we were able to show so far. This is mostly
due to two facts: First, we only performed little tuning on
the parameters. Except for the reward bound, all parame-
ters were chosen as in (Portelas et al., 2020). We expect
tuning to be especially beneficial for the size of the reward
history and the length of the initial exploration period and
explain this reasoning below. Second, SPALP performed
best in the walker and the ball catching environment with a
reward bound rb of −0.1. This value lies on the edge of the
parameter space we tried during tuning, while the general
tendency of the tuning was that higher bounds performed
better. Performance will thus probably improve further with
a higher reward bound, e.g. rb = −0.05 or even rb = 0.1.

4.2. A more nuanced approach to squashing

Picking one reward bound as the only hyperparameter for
how much we squash might be too crude a heuristic. The
advantage of SPALP comes from focusing on an easier sub-
space first, and squashing is strongest the further away the

Figure 7. Percentage of successful catches of 200 throws in the
ball catching environment after training with ALP-GMM and
SPALP (different rb). The figure shows mean performance and
standard error for five seeds per parameter value.

student is from the reward bound. As it gets closer during
training, the squashing gets weaker, allowing the student to
explore environments where the overall reward is smaller,
while still taking into account the learning progress, i.e. the
relative reward differences.
In the current implementation of SPALP, as soon as the stu-
dent falls below the reward bound, squashing is turned on
again and the teacher again favors parameterizations of the
environment that yield high rewards. If this happens to be
the easiest part of the subspace where we already sampled,
the agent cannot learn anything new. In this case, we enter
a cycle in which the student trains on easy environments
until the reward bound gets turned off, then explores for a
short while until it has to train on the easy environments
again. This turning-off-and-on-again pattern is indeed what
we saw in case of the ball catching environment (see figure
6). This behavior is problematic: if progress can no longer
be made in the easy subspace, but only in parts of the pa-
rameter space where the tasks are harder, learning is slower
and rewards are thus smaller for a longer time.
One solution might consist of lowering the reward bound
each time it is reached, like a ladder, thereby lowering
squashing overall and lessening the sampling disadvantage
of lower reward subspaces.
Note that whether we encounter the on-off-problem is also
influenced by the size of the reward history, upon which the
ALP are calculated (see section 2): If the reward history is
long enough, the teacher can remember that the student did
not make sizable learning progress in the easy subspace be-
fore squashing was turned off. In this case, even if squashing
is turned on again, the teacher still favors the more difficult
subspaces, because squashing can only make a small ALP

Self-Paced Absolute Learning Progress

of a high-reward environment bigger to some extent.
It follows that another solution might be to change the im-
plementation of the reward history. We could simply make
the FIFO buffer bigger. Or we could change it from one sin-
gle FIFO buffer for the complete parameter space to several
smaller buffers that are designated for distinct parts of the
parameter space. In the latter case, the teacher remembers
how much progress was made in one area until we sample
there again. The last solution would be more principled but
would also complicate the implementation.
Future work might try these more nuanced approaches on
its own or in combination.

4.3. Stronger squashing might require longer initial
exploration

Any advantage of the SPALP teacher over the ALP teacher
is rooted in a different distribution from which it draws the
samples it presents to the student. To study this, we explored
the sampling behavior of the SPALP teacher in the bipedal
walker environment in section 3.2. We found that in badly
performing seeds there was a pattern that the teacher did not
focus as strongly on the easy subspaces of the parameter
space. Typically, this happened when the very first fitting of
the GMM did not see a lot of samples in this region. While
this is only one reason why a seed might perform badly, it is
within our control to change it and thus deserving of further
analysis.
When squashing leads to higher ALP on high-reward tasks,
the GMMs concentrate most of their probability mass on
a few tasks. If the initial exploration phase is too short
and the teacher did not sample from the easy regions, the
GMMs are fitted to the wrong tasks. In this case, the teacher
can only recover through the small amounts of samples
dedicated to random exploration. Thus, we should think of
high squashing as something we do only after we have some
confidence that our previous samples overall came from
the right spot in the parameter space. One simple way to
make this more probable is to increase the period of initial
exploration before the first GMM is fitted.

4.4. Differences in the SPALP performance over
environments

In the case of the walker environment, we found differences
in how the ALP-GMM and SPALP teachers sample: In well
performing seeds, SPALP focused on the easiest part of the
parameter space. In the case of the ball catching environ-
ment, we did not find any differences. This goes hand in
hand with the overall performance: In the walker environ-
ment, SPALP was able to learn quicker than ALP-GMM.
In the ball catching environment, the results of SPALP and
ALP-GMM were very similar to each other.
Regarding the ball catching environment, we further re-
marked that the samples yielding high ALP were mostly

widespread over the parameter space of the ball catching
environment. In this case, there is no region SPALP can
focus on.
It bears repeating: Any advantage of the SPALP teacher
over the ALP-GMM teacher is rooted in a different distribu-
tion from which it draws the environment parameterizations
it presents to the student. If there is no region to focus
on, we cannot expect a difference between ALP-GMM and
SPALP. Consequently, we would expect no improvement
in the performance of SPALP when using a higher reward
bound: if there is no clear region where squashed ALPs are
higher, more squashing won’t help.
The lack of an apparent ”easy” region might also explain
the success of Klink et al. (2020b) over ALP-GMM in the
ball catching environment, because in their approach they
explicitly define a starting distribution over the parameter
space for the teacher to focus on, which they then slowly
expand. Results from the toy environment also indicate that
the shape of an environment‘s reward function influence
the effectiveness of SPALP. The toy environment is a hand-
crafted approach that might not be directly comparable to
more realistic applications, like the bipedal walker and ball
catching environment. Nevertheless, in this simple envi-
ronment we saw significant differences in the advantage of
SPALP over ALP depending on the reward function.
Future work could determine in which environments SPALP
works better or worse than standard ALP.

5. Conclusion
We aimed to create an improved version (SPALP) of the
already well-performing ALP-GMM from Portelas et al.
(2020) by extending it with a new regularization method
inspired by recent progress in Self-Paced Learning. A major
short-coming of our work lies in the small amount of random
seeds used for some evaluations. We evaluated our approach
in three environments, one of which was a handcrafted
approach. Only in the handcrafted approach was SPALP
able to clearly beat ALP-GMM. We explained how these
results might be replicated for the other two environments
by stronger squashing, a longer exploration period and a
longer memory of the teacher.
Our results indicate that it depends on the environment and
its reward structure how much performance benefits from
regularization. Future work could examine these differences
in environments in a more principled way.

Acknowledgements
This work originated from the master’s module Integrated
Project: Learning Robots at Technical University Darm-
stadt and we received course credit for it. This work was
not distributed and is not meant to be published publicly
elsewhere.

Self-Paced Absolute Learning Progress

References
Andrychowicz, O. M., Baker, B., Chociej, M., Józefowicz,

R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J.,
Welinder, P., Weng, L., and Zaremba, W. Learning dexter-
ous in-hand manipulation. The International Journal of
Robotics Research, 39(1):3–20, January 2020. Publisher:
SAGE Publications Ltd STM.

Baranes, A. and Oudeyer, P.-Y. Active learning of inverse
models with intrinsically motivated goal exploration in
robots. Robotics and Autonomous Systems, 61(1):49–73,
2013.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML
’09, pp. 41–48, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605585161.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In Dy,
J. and Krause, A. (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1515–
1528. PMLR, 10–15 Jul 2018.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. Automated curriculum learning for
neural networks. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1311–1320. PMLR, 06–11 Aug
2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A.,
Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
and Wu, Y. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Jiang, L., Meng, D., Zhao, Q., Shan, S., and Hauptmann,
A. G. Self-paced curriculum learning. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Scalable Deep Reinforce-
ment Learning for Vision-Based Robotic Manipulation.
In Conference on Robot Learning, pp. 651–673, October
2018.

Klink, P., Abdulsamad, H., Belousov, B., and Peters, J. Self-
paced contextual reinforcement learning. In Kaelbling,
L. P., Kragic, D., and Sugiura, K. (eds.), Proceedings
of the Conference on Robot Learning, volume 100 of
Proceedings of Machine Learning Research, pp. 513–529.
PMLR, 30 Oct–01 Nov 2020a.

Klink, P., D’Eramo, C., Peters, J., and Pajarinen, J. Self-
paced deep reinforcement learning. In NeurIPS, 2020b.

Klink, P., Abdulsamad, H., Belousov, B., D’Eramo, C.,
Peters, J., and Pajarinen, J. A probabilistic interpretation
of self-paced learning with applications to reinforcement
learning. CoRR, abs/2102.13176, 2021.

Kumar, M., Packer, B., and Koller, D. Self-paced learning
for latent variable models. Advances in neural informa-
tion processing systems, 23:1189–1197, 2010.

Matiisen, T., Oliver, A., Cohen, T., and Schulman, J.
Teacher–student curriculum learning. IEEE Transactions
on Neural Networks and Learning Systems, 31(9):3732–
3740, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs], December 2013. arXiv:
1312.5602.

Moulin-Frier, C., Nguyen, S. M., and Oudeyer, P.-Y. Self-
organization of early vocal development in infants and
machines: the role of intrinsic motivation. Frontiers in
Psychology, 4:1006, 2014.

OpenAI. Openai gym bipedal walker environment. https:
//github.com/openai/gym/blob/master/
gym/envs/box2d/bipedal_walker.py, 2018.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. Intrinsic
motivation systems for autonomous mental development.
IEEE Transactions on Evolutionary Computation, 11(2):
265–286, 2007.

Portelas, R., Colas, C., Hofmann, K., and Oudeyer, P.-Y.
Teacher algorithms for curriculum learning of deep rl in
continuously parameterized environments. In Kaelbling,
L. P., Kragic, D., and Sugiura, K. (eds.), Proceedings
of the Conference on Robot Learning, volume 100 of
Proceedings of Machine Learning Research, pp. 835–853.
PMLR, 30 Oct–01 Nov 2020.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. arXiv:1709.10087 [cs], June
2018.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py
https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py
https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py

Self-Paced Absolute Learning Progress

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, November 2019. Number: 7782 Publisher:
Nature Publishing Group.

Self-Paced Absolute Learning Progress

A. Environments Overview

(a) Toy Environment. Approximates a
parameter space as a set of hypercubes
that individually yield higher rewards pro-
portionally to how often they were being
sampled from.
rb = −0.4 for SPALP. Originally intro-
duced by Portelas et al. (2020).

(b) Bipedal Walker Environment. The
bipedal walker has to learn to walk in a
way to overcome obstacles of different
heights and spacings in its way.
rb = −0.1 for SPALP. Also used for eval-
uation of ALP-GMM by Portelas et al.
(2020). Top image taken from figure 1a
of the paper by Portelas et al. (2020).

(c) Ball Catching Environment. The
catcher has to learn how to move in order
to catch a ball thrown somewhere in the
catching plane, indicated in green in the
top figure.
rb = −0.1 for SPALP. Used by Klink
et al. (2020b) for evaluation of their Self-
Paced Deep Learning. Top image taken
from figure 1c of the paper by Klink et al.
(2020b).

Figure 8. Renderings of the different environments and their respective best performance plots with ALP-GMM (blue) and SPALP
(orange).

